雷锋网按:光场技术是目前最受追捧的下一代显示技术,谷歌、Facebook、Magic Leap等国内外大公司都在大力布局。然而目前国内对光场(Light Field)技术的中文介绍十分匮乏,曹煊博士《Mars说光场》系列文章旨在对光场技术及其应用的科普介绍。
曹煊博士系腾讯优图实验室高级研究员。优图— 腾讯旗下顶级的机器学习研发团队,专注于图像处理、模式识别、深度学习。在人脸识别、图像识别、医疗AI、OCR、哼唱识别、语音合成等领域都积累了领先的技术水平和完整解决方案。
《Mars说光场》系列文章目前已有5篇,包括:《Mars说光场(1)— 为何巨头纷纷布局光场技术》、《Mars说光场(2)— 光场与人眼立体成像机理》、《Mars说光场(3)— 光场采集》、《Mars说光场(4)— 光场显示》、《Mars说光场(5)— 光场在三维人脸建模中的应用》 ,雷锋网(公众号:雷锋网)经授权发布。
【摘要】 — 三维建模是计算机视觉中的一个经典问题,其主要目标是得到物体/场景的三维信息(e.g. 点云或深度图)。然而只有三维信息还不足以逼真的渲染重现真实世界,还需要表面反射场信息才能在视觉上以假乱真。本文主要介绍美国南加州大学ICT Graphic Lab的Paul Debevec所引领开发的Light Stage技术,该技术已经成功应用在好莱坞电影特效和2014年美国总统奥巴马的数字人脸建模等诸多应用中。
1、反射场在三维成/呈像中的重要性
三维建模可以得到物体的几何信息,例如点云、深度图等。但为了在视觉上逼真的重现三维物体,只有几何信息是不够的。不同物体表面在不同光照环境下会呈现出不同的反射效果,例如玉石会呈现出高光和半透明的反射效果、棉麻织物会呈现出漫反射的效果。即使是相同表面,在不同光照下也会呈现出不同的反射效果,例如图1中的精灵在魔法灯的照射下,脸上呈现出相应的颜色和阴影;阿凡达在发光水母的照射下脸上和身上也会呈现对应的反射效果,这就是Relighting所产生的效果。在现实生活中Relighting是一种再正常不过的现象了。然而当电影中Relighting的效果与实际不符时,人眼会感受到莫名的异常。
模拟出与真实物体表面一致的反射特性,对提高计算机渲染成/呈像的逼真度至关重要。在实际的拍摄中并不存在精灵和阿凡达,也不存在魔法灯和发光的水母,如何生成Photorealistic的图像呢?通过计算机模拟反射场(Reflectance Field)是目前好莱坞大片中惯用的方法。反射场是对所有反射特性的一个普适数学模型,物体表面不同位置(x, y, z)在时刻(t)向半球范围内不同角度(θ, Φ)发出波长为(λ)的光线,由R(x, y, z, θ, Φ, λ, t)七个维度构成的光线的集合就是反射场。关于光场和反射场的异同点参见《Mars说光场(1)— 综述》。
图 1. 反射场Relighting示意图
2、USC Light Stage介绍
Light Stage是由美国南加州大学ICT Graphic Lab的保罗•德贝维奇(Paul Debevec)所领导开发的一个高保真的三维采集重建平台系统。该系统以高逼真度的3D人脸重建为主,并已经应用于好莱坞电影渲染中。从第一代系统Light Stage 1于2000年诞生,至今已经升级到Light Stage 6,最新的一代系统命名为Light Stage X。
2.1 Light Stage 1
如图2所示,Light Stage 1 包括1个光源(strobe light)、2个相机(分辨率480×720)、1个投影仪,整个设备直径约3米[1]。光源可沿机械臂垂直移动,同时机械臂可带动光源水平旋转。整个采集过程包括两个阶段:第一阶段是以人脸为中心旋转光源,从而构成64×32个不同方向的等效光源入射到人脸上。与此同时,两个相机同步拍摄不同光照下的左侧脸和右侧脸,每个相机共拍摄2048张图片,如图3所示。需要说明的是光源和相机前分别覆盖了互相垂直的偏振片,用于分离散射和高光(separate diffuse and specular)。第二阶段是投影仪与2个相机配合完成基于结构光的三维重建,如图4所示。整个采集过程耗时约1分钟,采集过程中人脸需要持续保持静止,这对演员保持静止的能力提出了极高的要求。
图 2. Light Stage 1系统样机
Light Stage 1采集的图片样例如图3所示,第二行图片中亮点表示光源的位置,第一行图片表示对应光源照射下采集到的人脸图片,实际采集的反射场图片包括64×32光源位置下的2048张图片。采集三维几何模型通过结构光三维重建实现,如图4所示。
图 3. Light Stage 1 采集图片样例
图 4. Light Stage 1 基于结构光的三维重建
在进行Relighting渲染之前还需要通过Specular Ball / Mirror Ball采集环境光照,如图5所示。通过Mirror Ball采集的图片需要经过重采样得到离散的环境光照矩阵[2],然后将环境光照应用在反射场图中,得到如图6中Relighting的渲染效果。图6中第二行图片为Specular Ball在不同环境下采集的环境光照展开图,第一行图片为对应光照下人脸渲染结果。需要说明的是,图6中人脸Relighting的渲染图片只限于固定视点,如果需要改变视点需要结合结构光采集的三维几何模型。
图 5. Specular Ball 采集环境光
图 6. Light Stage 1 人脸Relighting效果
2.2 USC Light Stage 2
Light Stage 2 在Light Stage 1 的基础上增加了更多的光源,将23个白色光源分布于弧形机械臂上[3-5]。机械臂旋转到不同的经线位置,并依次点亮光源,最终形成42×23个不同方向的入射光源。采集时间从1分钟缩短到4秒,降低了演员维持静态表情的难度。如图7所示,右侧为Light Stage 2真机系统,左侧为采集过程中4秒长曝光拍摄图片。
图 7. Light Stage 2 采集示意图
2.3 USC Light Stage 3
在不同的光照环境下,人脸会反射出不同的“脸色”,例如人脸在火炬前会被映红。通过改变环境光照而使物体表面呈现与之对应的反射状态称为“Relighting”。然而在电影拍摄中并不能把演员置身于任意真实的环境中,例如《指环王》中男主角佛罗多·巴金斯置身于火山岩中,又例如阿凡达置身于梦幻蓝色树丛中。Light Stage 3并不用于人脸建模,而是构建一个可控的彩色光照平台,从而可以实现人脸实时的Relighting[6-8]。
Light Stage 3的支撑结构为二十面体,包括42个顶点、120条边、80个面,如图8所示。在每个顶点和每条边的中心放置一个彩色光源,一共可放置162个彩色光源。由于球体底部5个顶点及其相应的边被移除用于演员站立,因此实际光源数量减少到156个。光源型号为Philips Color Kinetics,iColor MR gen3 LED Lamp http://www.lighting.philips.com/main/prof/indoor-luminaires/projectors/icolor-mr-gen3。光源的亮度和颜色通过USB控制PWM占空比来实现。用于人脸图像采集的相机为Sony DXC-9000,帧率60fps,分辨率640×480,FOV 40度。Light Stage 3还包括6个红外光源和1个灰度相机。红外光源的峰值波长为850nm。灰度相机为Uniq Vision UP-610,帧率110 fps,分辨率640×480,FOV 42度,红外滤光片为Hoya R72。彩色相机和红外相机之间采用分光片确保彩色图像和红外图像对齐,30%反射进入红外相机,70%透射进入彩色相机,如图9所示。
图 8. Light Stage 3 采集系统样机
图 9. Light Stage 3 分光采集系统
如图10所示,Light Stage 3的工作流程如下:首先用Specular Ball采集目标环境光照,或者计算机生成虚拟环境的光照。然后控制156个彩色光源模拟出与目标环境光照相似的光线,演员在Light Stage 3产生的光照下进行表演。最后通过红外成像把Relighting的人像扣出并融合到电影中。由于Light Stage 3不能重建三维人脸模型,因此不能随意切换视点,需要演员精湛的演技将肢体形态与目标环境融合。最终Relighting合成视频如下所示。
图 10. Light Stage 3 采集图片样例及融合真实环境效果效果
2.4 USC Light Stage 5
Light Stage 5采用与Light Stage 3同样的支撑结构,但把156个彩色光源换成156个白色光源,如图11所示[9-12]。每个白色光源包括12个Lumileds LED灯珠,平均分成2组,分别覆盖水平和垂直的偏振片。理想情况下,需要按照Light Stage 2的光照模式依次点亮每个光源并拍照,那么一共需要拍摄156张图片。Light Stage 5创新性地采用了球谐调和光照(Spherical Harmonic Lighting),如图12所示,将光照模式(Lighting Pattern)从156个减少到4个,分别是沿X/Y/Z方向递减的3个梯度光照和1个均匀全亮光照。由于需要拍摄水平和垂直两种偏振状态下的图片,因此每个相机一共需要拍摄8种光照模式下的8张图片。相比之前的Light Stage,整个采集的时间大大缩短。如果采用高速相机可以达到实时采集,如果采用单反相机需要2秒。
图 11. Light Stage 5 采集系统样机
图 12. Light Stage 5 偏振光布局
人脸包括低频和高频两种几何信息,低频几何信息主要是指鼻梁高低、脸型胖瘦等;高频几何信息主要是指毛孔、胡须、唇纹等。对于低频几何信息,Light Stage 5采用两种三维建模方法:一种是用DLP高速投影仪和Phantom高速摄像机构成基于结构光的实时三维重建。另一种是采用5个单反相机(Canon 1D Mark III)构成多视几何(Multi-view Geometry)重建三维人脸模型。在上述两种三维建模方法的基础上,进一步采用Photometric Stereo来生成高频几何模型。图13为Light Stage 5所完成的“Digital Emily”项目中重建的数字演员艾米丽[13,14],左侧为重建的高精度Normal Map,中间为只用Diffuse Component重建的人脸模型,右侧为同时加上Diffuse Component和Specular Component以后重建的高精细人脸。
图 13. Light Stage 5 Digital Emily人脸重建效果
2.5 USC Light Stage 6
如图14和15所示,Light Stage 6是为采集演员全身反射场而设计[15]。支撑结构直径8米,为了使演员处于球体中心,去掉了球体底部1/3。Light Stage 6共包括1111个光源,每个光源由6颗LumiLEDs Luxeon V LED灯珠构成。采集系统包括3台垂直分布的高速摄像机以30fps同步采集图像,每一帧图像包括33种不同光照。所以高速相机实际的工作频率为990Hz。在支撑结构的中心有一个旋转平台,该旋转平台为演员有效的表演区域,直径2米。在采集过程中旋转平台会持续旋转,高速相机从而拍摄到不同视点的演员图像,演员需要不断的重复周期性动作,整个采集过程约几分钟。
图 14. Light Stage 6 采集系统样机
图 15. Light Stage 6 采集系统示意图
Light Stage 6并不对人体进行几何建模,而是采用与Light Stage 3类似的原理来实现Relighting。Light Stage 6相比Light Stage 3的改进之处在于视点可切换。Light Stage 6为了实现视点切换,需要演员周期性的重复动作,例如跑步,然后采集到所有不同光照下不同视点的图像。图16上侧图片为1/30秒内某一个相机采集的所有图片,包括26张不同光照下的图片(Lighting Frames),3张红外图片(Matting Frames)用于抠图,3张跟踪图片(Tracking Frames)用于光流对齐图片,1张预留图片(Strip Frame)目前无用,将用于后续其他潜在功能应用。图16下侧图片为相机阵列中上中下三个相机分别采集到的图片。如图17所示,所采集的图片分布于一个圆柱形上,当渲染不同视点下的Relighting图片时,从圆柱形上选择合适的视点进行融合。
图 16. Light Stage 6 采集图片样例
图 17. Light Stage 6 多视点渲染
2.6 Light Stage对比总结
Light Stage 1 和Light Stage 2都是基于稠密采样的反射场采集,因此采集时间较长。Light Stage 3采集彩色光源照射实时生成Relighting图片,但没有进行三维建模,所以应用场景有限。Light Stage 4的研发被搁置了,所以取消了Light Stage 4的命名,转而直接研发Light Stage 5。Light Stage 5基于球谐调和进行反射场的低阶采样,是相对比较成熟的一代系统,已经在《本杰明•巴顿》、《蜘蛛侠》等电影特效中得到应用。最新研发的系统为Light Stage X,小型可移动,专门针对高精度人脸反射场采集建模;其光照亮度、光谱、偏振状态都可以基于USB接口通过电脑编程控制,自动化程度更高,采集时间更短。2014年采集美国时任总统奥巴马头像时,就是基于Light Stage X系统,如图18为采集现场,图19为重建结果。Paul Debevec及其团队核心成员于2016年加入谷歌DayDream部门,主要是将光场技术应用于泛VR领域,其团队于2018年8月在steam平台上上线了《Welcome to light field》体验应用。
表 1. USC Light Stage汇总对比
Light Stage 1 |
Light Stage 2 |
Light Stage 3 |
Light Stage 5 |
Light Stage 6 |
|
尺寸(直径) |
3米 |
2米 |
2米 |
2米 |
8米 |
支撑结构 |
1个光源可沿机械臂上下移动 |
30个光源均匀分布于弧形机械臂 |
二十面体,42个顶点,120条边,80个面。 |
二十面体,42个顶点,120条边,80个面。 |
二十面体的均匀细分,只保留整圆的2/3。圆球结构中心为旋转舞台。 |
实际光源数量 |
1个白色 |
30个白色 |
156个彩色LED光源,6个红外光源(850nm峰值波长) |
156个白色LED光源 |
1111个白色LED光源(LumiLEDs Luxeon V) |
等效光源数量 |
64×32个白色 |
42×30个白色 |
156个彩色 |
156个白色 |
1111个白色 |
相机数量 |
2@480×720 |
2@480×720 |
(a)1个RGB相机(Sony DXC-9000@60fps @640×480 @FOV40)。 (b)1个红外相机。 (Uniq Vision UP-610@110 fps@640×480 @FOV42 Hoya R72滤波片)。 |
(a)双目高速相机(Phantom V7.1 @ 800 × 600)+结构光(DLP projector @1024×768)。 (b)5个相机构成多视几何(Canon 1D Mark III EF 50mm f/1.8 II lenses)。 |
3个高速相机垂直分布。 |
采集时间 |
60秒 |
4秒 |
实时 |
实时/2秒 |
几分钟 |
三维重建方法 |
结构光 |
结构光 |
无三维建模 |
机构光/多视几何 |
无三维建模,光流配准图像 |
优点 |
互相垂直偏振片分离散射和高光。 |
互相垂直偏振片分离散射和高光。 只需要水平旋转,减少采集时间。 |
红外成像用于人像抠图。 彩色光源模拟环境光,实现人像实时Relighting。 |
互相垂直偏振片分离散射和高光。 实时建模/静态建模。 |
互相垂直偏振片分离散射和高光。 可以采集全身运动。 |
缺点 |
采集时间过长,人脸难以保持静止。 需要机械旋转。 |
需要机械旋转。 |
无三维建模,不能自由切换视点,需要演员精湛演技。 |
只能建模人脸,不能建模全身。 |
只能建模周期重复性运动。 |
(图片来源于 http://vgl.ict.usc.edu/Research/PresidentialPortrait/)
图 18. Light Stage X为美国时任总统奥巴马采集人脸头像现场
(图片来源于 http://vgl.ict.usc.edu/Research/PresidentialPortrait/)
图 19. 美国时任总统奥巴马重建头像
[1] Debevec P, Hawkins T, Tchou C, et al. Acquiring the reflectance field of a human face[C]// SIGGRAPH '00 : Proc. Conference on Computer Graphics and Interactive Techniques. 2000:145-156.
[2] Debevec P. A median cut algorithm for light probe sampling[C]// ACM SIGGRAPH. ACM, 2008:1-3.
[3] Tim Hawkins, Jonathan Cohen, Chris Tchou, Paul Debevec, Light Stage 2.0, In SIGGRAPH Technical Sketches, 2001.
[4] Hawkins T, Cohen J, Debevec P. A photometric approach to digitizing cultural artifacts[C]// Conference on Virtual Reality, Archeology, and Cultural Heritage. ACM, 2001:333-342.
[5] Hawkins T, Wenger A, Tchou C, et al. Animatable facial reflectance fields[C]// Fifteenth Eurographics Conference on Rendering Techniques. Eurographics Association, 2004:309-319.
[6] Jones A, Gardner A, Bolas M, et al. Simulating Spatially Varying Lighting on a Live Performance[C]// European Conference on Visual Media Production. IET, 2006:127-133.
[7] Wenger A, Hawkins T, Debevec P. Optimizing Color Matching in a Lighting Reproduction System for Complex Subject and Illuminant Spectra.[C]// Eurographics Workshop on Rendering Techniques, Leuven, Belgium, June. DBLP, 2003:249-259.
[8] Debevec P, Wenger A, Tchou C, et al. A lighting reproduction approach to live-action compositing[C]// Conference on Computer Graphics & Interactive Techniques. ACM, 2002:547-556.
[9] Wenger A, Gardner A, Tchou C, et al. Performance relighting and reflectance transformation with time-multiplexed illumination[C]// ACM, 2005:756-764.
[10] Ghosh A, Hawkins T, Peers P, et al. Practical modeling and acquisition of layered facial reflectance[J]. Acm Transactions on Graphics, 2008, 27(5):1-10.
[11] Ma W C, Hawkins T, Peers P, et al. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination[C]// Eurographics Conference on Rendering Techniques. Eurographics Association, 2007:183-194.
[12] Ghosh A, Fyffe G, Tunwattanapong B, et al. Multiview Face Capture using Polarized Spherical Gradient Illumination[J]. Acm Transactions on Graphics, 2011, 30(6):1-10.
[13] Alexander O, Rogers M, Lambeth W, et al. Creating a Photoreal Digital Actor: The Digital Emily Project[C]// Visual Media Production, 2009. CVMP '09. Conference for. IEEE, 2010:176-187.
[14] Alexander O, Rogers M, Lambeth W, et al. The digital Emily project: achieving a photorealistic digital actor[J]. IEEE Computer Graphics & Applications, 2010, 30(4):20.
[15] Einarsson P, Jones A, Lamond B, et al. Relighting human locomotion with flowed reflectance fields[C]// ACM SIGGRAPH 2006 Sketches. ACM, 2006:76.
。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/92340.html