利用python的KMeans和PCA包实现聚类算法详解大数据

题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚类,聚成普通驾驶类型,激进类型和超冷静型3类 。 利用Python的scikit-learn包中的Kmeans算法进行聚类算法的应用练习。并利用scikit-learn包中的PCA算法来对聚类后的数据进行降维,然后画图展示出聚类效果。通过调节聚类算法的参数,来观察聚类效果的变化,练习调参。

数据介绍: 选取某一个驾驶员的经过处理的数据集trip.csv,将该驾驶人的各个时间段的特征进行聚类。(注:其中的driver 和trip_no 不参与聚类)

字段介绍: driver :驾驶员编号;trip_no:trip编号;v_avg:平均速度;v_var:速度的方差;a_avg:平均加速度;a_var:加速度的方差;r_avg:平均转速;r_var:转速的方差; v_a:速度level为a时的时间占比(同理v_b , v_c , v_d ); a_a:加速度level为a时的时间占比(同理a_b, a_c); r_a:转速level为a时的时间占比( r_b, r_c)

聚类算法要求

(1)统计各个类别的数目

(2)找出聚类中心

(3)将每条数据聚成的类别(该列命名为jllable )和原始数据集进行合并,形成新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

降维算法要求:

(1)将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca

(2)画图来展示聚类效果(可用如下代码):

 import matplotlib.pyplot asplt

   d = new_pca[new_df[‘jllable’] == 0]

   plt.plot(d[0], d[1], ‘r.’)

   d = new_pca[new_df[‘jllable’] == 1]

   plt.plot(d[0], d[1], ‘go’)

   d = new_pca[new_df[‘jllable’] == 2]

   plt.plot(d[0], d[1], ‘b*’)

   plt.gcf().savefig(‘D:/workspace/python/Practice/ddsx/kmeans.png’)

   plt.show()

 

python实现代码如下:

from sklearn.cluster import KMeans 
from sklearn.decomposition import PCA 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 
df=pd.read_csv('trip.csv', header=0, encoding='utf-8') 
df1=df.ix[:,2:] 
kmeans = KMeans(n_clusters=3, random_state=10).fit(df1) 
df1['jllable']=kmeans.labels_ 
df_count_type=df1.groupby('jllable').apply(np.size) 
 
 
 
##各个类别的数目 
df_count_type 
##聚类中心 
kmeans.cluster_centers_ 
##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。 
new_df=df1[:] 
new_df 
new_df.to_csv('new_df.csv') 
 
##将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca 
pca = PCA(n_components=2) 
new_pca = pd.DataFrame(pca.fit_transform(new_df)) 
 
##可视化 
d = new_pca[new_df['jllable'] == 0]  
plt.plot(d[0], d[1], 'r.') 
d = new_pca[new_df['jllable'] == 1] 
plt.plot(d[0], d[1], 'go') 
d = new_pca[new_df['jllable'] == 2] 
plt.plot(d[0], d[1], 'b*') 
plt.gcf().savefig('kmeans.png') 
plt.show() 

 

运行结果如下:

   ##各个类别的数目

利用python的KMeans和PCA包实现聚类算法详解大数据

    ##聚类中心

利用python的KMeans和PCA包实现聚类算法详解大数据

    ##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

 利用python的KMeans和PCA包实现聚类算法详解大数据

    ##可视化——kmeans.png

利用python的KMeans和PCA包实现聚类算法详解大数据

 

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/9267.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论