Spark-Sql源码解析之六 PrepareForExecution: spark plan -> executed Plan详解大数据

在SparkPlan中插入Shuffle的操作,如果前后2个SparkPlan的outputPartitioning不一样的话,则中间需要插入Shuffle的动作,比分说聚合函数,先局部聚合,然后全局聚合,局部聚合和全局聚合的分区规则是不一样的,中间需要进行一次Shuffle。

比方说sql语句:selectSUM(id) from test group by dev_chnid

其从逻辑计划转换为的物理计划如下:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] 
 Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L] 
  PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]
其中Aggregate的第一个构造函数指明了其ChildDistribution,即规定了该SparkPlan的分区规则
case class Aggregate( 
    partial: Boolean, 
    groupingExpressions: Seq[Expression], 
    aggregateExpressions: Seq[NamedExpression], 
    child: SparkPlan) 
  extends UnaryNode { 
  override def requiredChildDistribution: List[Distribution] = { 
    if (partial) { 
      UnspecifiedDistribution :: Nil //当为true时,则对于Child的分区规则无所谓 
    } else { 
      if (groupingExpressions == Nil) { 
        AllTuples :: Nil 
      } else { 
        ClusteredDistribution(groupingExpressions) :: Nil //当为false时,必须按照聚合字段进行分区,此时为dev_chnid 
      } 
    } 
  } 
  …… 
}
因此如果按照以上SparkPlan执行的话,其流程图如下:

Spark-Sql源码解析之六 PrepareForExecution: spark plan -> executed Plan详解大数据

Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L)AS PartialSum#45L]的输出是没有规则的,Aggregate false, [dev_chnid#0],[CombineSum(PartialSum#45L) AS c0#43L]所要求的输入是必须按照group字段分区的,因此中间必然有个转变,将前一个Aggretae无规则的输出变为后一个Aggregate有规则的输入,这就是prepareForExecution所负责的事。

lazy val executedPlan: SparkPlan = prepareForExecution.execute(sparkPlan) 
protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] { 
  val batches = 
    Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil 
} 
private[sql] case class EnsureRequirements(sqlContext: SQLContext) extends Rule[SparkPlan] { 
  // TODO: Determine the number of partitions. 
  def numPartitions: Int = sqlContext.conf.numShufflePartitions 
 
  def apply(plan: SparkPlan): SparkPlan = plan.transformUp {//先遍历孩子节点,然后遍历自己 
    case operator: SparkPlan => 
      // True iff every child's outputPartitioning satisfies the corresponding 
      // required data distribution. 
      //ClusteredDistribution(groupingExpressions) :: Nil zip 
      def meetsRequirements: Boolean =//判断该SparkPlan的child的outputPartitioning是否满足其本身的要求 
        operator.requiredChildDistribution.zip(operator.children).forall { 
          case (required, child) => 
            val valid = child.outputPartitioning.satisfies(required) 
            logInfo( 
              s"${if (valid) "Valid" else "Invalid"} distribution," + 
                s"required: $required current: ${child.outputPartitioning}") 
            valid 
        } 
 
      // True iff any of the children are incorrectly sorted. 
      def needsAnySort: Boolean =//判断该SparkPlan的child的outputOrdering是否满足其本身的要求 
        operator.requiredChildOrdering.zip(operator.children).exists { 
          case (required, child) => required.nonEmpty && required != child.outputOrdering 
        } 
 
      // True iff outputPartitionings of children are compatible with each other. 
      // It is possible that every child satisfies its required data distribution 
      // but two children have incompatible outputPartitionings. For example, 
      // A dataset is range partitioned by "a.asc" (RangePartitioning) and another 
      // dataset is hash partitioned by "a" (HashPartitioning). Tuples in these two 
      // datasets are both clustered by "a", but these two outputPartitionings are not 
      // compatible. 
      // TODO: ASSUMES TRANSITIVITY? 
      def compatible: Boolean =//当SparkPlan有多个child的时候,需要判断各个child之间的兼容性 
        !operator.children 
          .map(_.outputPartitioning) 
          .sliding(2) 
          .map { 
            case Seq(a) => true 
            case Seq(a, b) => a.compatibleWith(b) 
          }.exists(!_) 
 
      // Adds Exchange or Sort operators as required 
      def addOperatorsIfNecessary( 
          partitioning: Partitioning, 
          rowOrdering: Seq[SortOrder], 
          child: SparkPlan): SparkPlan = { 
        val needSort = rowOrdering.nonEmpty && child.outputOrdering != rowOrdering 
        val needsShuffle = child.outputPartitioning != partitioning 
        val canSortWithShuffle = Exchange.canSortWithShuffle(partitioning, rowOrdering) 
 
        if (needSort && needsShuffle && canSortWithShuffle) { 
          Exchange(partitioning, rowOrdering, child) 
        } else { 
          val withShuffle = if (needsShuffle) { 
            Exchange(partitioning, Nil, child) 
          } else { 
            child 
          } 
 
          val withSort = if (needSort) { 
            if (sqlContext.conf.externalSortEnabled) { 
              ExternalSort(rowOrdering, global = false, withShuffle) 
            } else { 
              Sort(rowOrdering, global = false, withShuffle) 
            } 
          } else { 
            withShuffle 
          } 
 
          withSort 
        } 
      } 
 
      if (meetsRequirements && compatible && !needsAnySort) {//如果满足,则不做任何事情 
        operator 
      } else { 
        // At least one child does not satisfies its required data distribution or 
        // at least one child's outputPartitioning is not compatible with another child's 
        // outputPartitioning. In this case, we need to add Exchange operators. 
        val requirements = 
          (operator.requiredChildDistribution, operator.requiredChildOrdering, operator.children) 
 
        val fixedChildren = requirements.zipped.map {//根据不同的要求产生一个中间的过渡的SparkPlan 
          case (AllTuples, rowOrdering, child) => 
            addOperatorsIfNecessary(SinglePartition, rowOrdering, child) 
          case (ClusteredDistribution(clustering), rowOrdering, child) =>//SUM分组求和的时候需要对分组字段进行hash分区 
            addOperatorsIfNecessary(HashPartitioning(clustering, numPartitions), rowOrdering, child) 
          case (OrderedDistribution(ordering), rowOrdering, child) => 
            addOperatorsIfNecessary(RangePartitioning(ordering, numPartitions), rowOrdering, child) 
 
          case (UnspecifiedDistribution, Seq(), child) => 
            child 
          case (UnspecifiedDistribution, rowOrdering, child) => 
            if (sqlContext.conf.externalSortEnabled) { 
              ExternalSort(rowOrdering, global = false, child) 
            } else { 
              Sort(rowOrdering, global = false, child) 
            } 
 
          case (dist, ordering, _) => 
            sys.error(s"Don't know how to ensure $dist with ordering $ordering") 
        } 
 
        operator.withNewChildren(fixedChildren) 
      } 
  } 
}

因此经过prepareForExecution处理之后其SparkPlan变成了如下的形式:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] 
 Exchange (HashPartitioning 200) 
  Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L] 
   PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]

其流程图如下:

Spark-Sql源码解析之六 PrepareForExecution: spark plan -> executed Plan详解大数据

通过Exchange将原有2个数据集的实际输出和所要求的输入保持一致。

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/9308.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论