在SparkPlan中插入Shuffle的操作,如果前后2个SparkPlan的outputPartitioning不一样的话,则中间需要插入Shuffle的动作,比分说聚合函数,先局部聚合,然后全局聚合,局部聚合和全局聚合的分区规则是不一样的,中间需要进行一次Shuffle。
比方说sql语句:selectSUM(id) from test group by dev_chnid
其从逻辑计划转换为的物理计划如下:
Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L] PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]
其中Aggregate的第一个构造函数指明了其ChildDistribution,即规定了该SparkPlan的分区规则
case class Aggregate( partial: Boolean, groupingExpressions: Seq[Expression], aggregateExpressions: Seq[NamedExpression], child: SparkPlan) extends UnaryNode { override def requiredChildDistribution: List[Distribution] = { if (partial) { UnspecifiedDistribution :: Nil //当为true时,则对于Child的分区规则无所谓 } else { if (groupingExpressions == Nil) { AllTuples :: Nil } else { ClusteredDistribution(groupingExpressions) :: Nil //当为false时,必须按照聚合字段进行分区,此时为dev_chnid } } } …… }
因此如果按照以上SparkPlan执行的话,其流程图如下:
Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L)AS PartialSum#45L]的输出是没有规则的,Aggregate false, [dev_chnid#0],[CombineSum(PartialSum#45L) AS c0#43L]所要求的输入是必须按照group字段分区的,因此中间必然有个转变,将前一个Aggretae无规则的输出变为后一个Aggregate有规则的输入,这就是prepareForExecution所负责的事。
lazy val executedPlan: SparkPlan = prepareForExecution.execute(sparkPlan) protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] { val batches = Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil } private[sql] case class EnsureRequirements(sqlContext: SQLContext) extends Rule[SparkPlan] { // TODO: Determine the number of partitions. def numPartitions: Int = sqlContext.conf.numShufflePartitions def apply(plan: SparkPlan): SparkPlan = plan.transformUp {//先遍历孩子节点,然后遍历自己 case operator: SparkPlan => // True iff every child's outputPartitioning satisfies the corresponding // required data distribution. //ClusteredDistribution(groupingExpressions) :: Nil zip def meetsRequirements: Boolean =//判断该SparkPlan的child的outputPartitioning是否满足其本身的要求 operator.requiredChildDistribution.zip(operator.children).forall { case (required, child) => val valid = child.outputPartitioning.satisfies(required) logInfo( s"${if (valid) "Valid" else "Invalid"} distribution," + s"required: $required current: ${child.outputPartitioning}") valid } // True iff any of the children are incorrectly sorted. def needsAnySort: Boolean =//判断该SparkPlan的child的outputOrdering是否满足其本身的要求 operator.requiredChildOrdering.zip(operator.children).exists { case (required, child) => required.nonEmpty && required != child.outputOrdering } // True iff outputPartitionings of children are compatible with each other. // It is possible that every child satisfies its required data distribution // but two children have incompatible outputPartitionings. For example, // A dataset is range partitioned by "a.asc" (RangePartitioning) and another // dataset is hash partitioned by "a" (HashPartitioning). Tuples in these two // datasets are both clustered by "a", but these two outputPartitionings are not // compatible. // TODO: ASSUMES TRANSITIVITY? def compatible: Boolean =//当SparkPlan有多个child的时候,需要判断各个child之间的兼容性 !operator.children .map(_.outputPartitioning) .sliding(2) .map { case Seq(a) => true case Seq(a, b) => a.compatibleWith(b) }.exists(!_) // Adds Exchange or Sort operators as required def addOperatorsIfNecessary( partitioning: Partitioning, rowOrdering: Seq[SortOrder], child: SparkPlan): SparkPlan = { val needSort = rowOrdering.nonEmpty && child.outputOrdering != rowOrdering val needsShuffle = child.outputPartitioning != partitioning val canSortWithShuffle = Exchange.canSortWithShuffle(partitioning, rowOrdering) if (needSort && needsShuffle && canSortWithShuffle) { Exchange(partitioning, rowOrdering, child) } else { val withShuffle = if (needsShuffle) { Exchange(partitioning, Nil, child) } else { child } val withSort = if (needSort) { if (sqlContext.conf.externalSortEnabled) { ExternalSort(rowOrdering, global = false, withShuffle) } else { Sort(rowOrdering, global = false, withShuffle) } } else { withShuffle } withSort } } if (meetsRequirements && compatible && !needsAnySort) {//如果满足,则不做任何事情 operator } else { // At least one child does not satisfies its required data distribution or // at least one child's outputPartitioning is not compatible with another child's // outputPartitioning. In this case, we need to add Exchange operators. val requirements = (operator.requiredChildDistribution, operator.requiredChildOrdering, operator.children) val fixedChildren = requirements.zipped.map {//根据不同的要求产生一个中间的过渡的SparkPlan case (AllTuples, rowOrdering, child) => addOperatorsIfNecessary(SinglePartition, rowOrdering, child) case (ClusteredDistribution(clustering), rowOrdering, child) =>//SUM分组求和的时候需要对分组字段进行hash分区 addOperatorsIfNecessary(HashPartitioning(clustering, numPartitions), rowOrdering, child) case (OrderedDistribution(ordering), rowOrdering, child) => addOperatorsIfNecessary(RangePartitioning(ordering, numPartitions), rowOrdering, child) case (UnspecifiedDistribution, Seq(), child) => child case (UnspecifiedDistribution, rowOrdering, child) => if (sqlContext.conf.externalSortEnabled) { ExternalSort(rowOrdering, global = false, child) } else { Sort(rowOrdering, global = false, child) } case (dist, ordering, _) => sys.error(s"Don't know how to ensure $dist with ordering $ordering") } operator.withNewChildren(fixedChildren) } } }
因此经过prepareForExecution处理之后其SparkPlan变成了如下的形式:
Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] Exchange (HashPartitioning 200) Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L] PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]
其流程图如下:
通过Exchange将原有2个数据集的实际输出和所要求的输入保持一致。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/9308.html