Analyzer主要职责就是将通过Sql Parser未能Resolved的Logical Plan给Resolved掉。
lazy val analyzed: LogicalPlan = analyzer.execute(logical)//分析过的LogicalPlan protected[sql] lazy val analyzer: Analyzer = new Analyzer(catalog, functionRegistry, conf) { override val extendedResolutionRules = ExtractPythonUdfs :: sources.PreInsertCastAndRename :: Nil override val extendedCheckRules = Seq( sources.PreWriteCheck(catalog) ) } class Analyzer( catalog: Catalog, registry: FunctionRegistry, conf: CatalystConf, maxIterations: Int = 100) extends RuleExecutor[LogicalPlan] with HiveTypeCoercion with CheckAnalysis { def resolver: Resolver = { if (conf.caseSensitiveAnalysis) { caseSensitiveResolution } else { caseInsensitiveResolution } } val fixedPoint = FixedPoint(maxIterations) /** * Override to provide additional rules for the "Resolution" batch. */ val extendedResolutionRules: Seq[Rule[LogicalPlan]] = Nil lazy val batches: Seq[Batch] = Seq(//不同的Batch代表不同的策略 Batch("Substitution", fixedPoint, CTESubstitution :: WindowsSubstitution :: Nil : _*), Batch("Resolution", fixedPoint, //通过catalog解析表名 ResolveRelations :: //解析从子节点的操作生成的属性,一般是别名引起的,比如a.id ResolveReferences :: ResolveGroupingAnalytics :: //在select语言里,order by的属性往往在前面没写,查询的时候也需要把这些字段查出来,排序完毕之后再删除 ResolveSortReferences :: ResolveGenerate :: //解析函数 ResolveFunctions :: ExtractWindowExpressions :: //解析全局的聚合函数,比如select sum(score) from table GlobalAggregates :: //解析having子句后面的聚合过滤条件,比如having sum(score) > 400 UnresolvedHavingClauseAttributes :: //typeCoercionRules是hive的类型转换规则 TrimGroupingAliases :: typeCoercionRules ++ extendedResolutionRules : _*) ) … }
其中val analyzed: LogicalPlan= analyzer.execute(logical),logical就是sqlparser解析出来的unresolved logical plan,analyzed就是analyzed logical plan。那么exectue究竟是这么样的过程呢?
def execute(plan: TreeType): TreeType = { var curPlan = plan batches.foreach { batch =>//针对每个Batch进行处理 val batchStartPlan = curPlan var iteration = 1 var lastPlan = curPlan var continue = true // Run until fix point (or the max number of iterations as specified in the strategy. while (continue) {//只要对这个plan应用这个batch里面的所有rule之后,最后生成的plan没有发生变化才认为所有都遍历过了,只要有变化,就继续遍历 //fold函数操作遍历问题集合的顺序。foldLeft是从左开始计算,然后往右遍历。foldRight是从右开始算,然后往左遍历。 curPlan = batch.rules.foldLeft(curPlan) { case (plan, rule) => val result = rule(plan)//对这个plan应用rule.apply转化里面的TreeNode logInfo(s"plan (${plan}) /n result (${result}) /n rule (${rule})")//加这个打印可以看到每个plan应用之后的result是什么,方便后面讲解 if (!result.fastEquals(plan)) { logTrace( s""" |=== Applying Rule ${rule.ruleName} === |${sideBySide(plan.treeString, result.treeString).mkString("/n")} """.stripMargin) } result } iteration += 1 if (iteration > batch.strategy.maxIterations) { // Only log if this is a rule that is supposed to run more than once. if (iteration != 2) { logInfo(s"Max iterations (${iteration - 1}) reached for batch ${batch.name}") } continue = false } if (curPlan.fastEquals(lastPlan)) { logTrace( s"Fixed point reached for batch ${batch.name} after ${iteration - 1} iterations.") continue = false } lastPlan = curPlan } if (!batchStartPlan.fastEquals(curPlan)) { logDebug( s""" |=== Result of Batch ${batch.name} === |${sideBySide(plan.treeString, curPlan.treeString).mkString("/n")} """.stripMargin) } else { logTrace(s"Batch ${batch.name} has no effect.") } } curPlan }
重点在于以下这个函数:
val result = rule(plan)//对这个plan应用rule.apply转化里面的TreeNode
rule(plan)调用的是对应的Rule[LogicalPlan]对象里面的apply函数,例如ResolveRelations和ResolveReferences
object ResolveRelations extends Rule[LogicalPlan] { def getTable(u: UnresolvedRelation): LogicalPlan = { try { catalog.lookupRelation(u.tableIdentifier, u.alias) } catch { case _: NoSuchTableException => u.failAnalysis(s"no such table ${u.tableName}") } } //输入(plan)logical 返回logical,transform是遍历各个节点,对每个节点应用该rule def apply(plan: LogicalPlan): LogicalPlan = plan transform {//调用transformDown,本质上就是二叉树的前序(pre-order )遍历 case [email protected](u: UnresolvedRelation, _, _, _, _) => i.copy(table = EliminateSubQueries(getTable(u))) case u: UnresolvedRelation => getTable(u) } }
object ResolveReferences extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {// transformUp本质上就是二叉树的后序(post-order )遍历 case p: LogicalPlan if !p.childrenResolved => p // If the projection list contains Stars, expand it. case p @ Project(projectList, child) if containsStar(projectList) => Project( projectList.flatMap { case s: Star => s.expand(child.output, resolver) case Alias(f @ UnresolvedFunction(_, args), name) if containsStar(args) => val expandedArgs = args.flatMap { case s: Star => s.expand(child.output, resolver) case o => o :: Nil } Alias(child = f.copy(children = expandedArgs), name)() :: Nil case Alias(c @ CreateArray(args), name) if containsStar(args) => val expandedArgs = args.flatMap { case s: Star => s.expand(child.output, resolver) case o => o
二叉树的遍历原理见下图:
接下来讲解几个典型的Rule[LogicalPlan]
3.1 ResolveRelations
将UnresolvedRelation解析为resolvedRelation
object ResolveRelations extends Rule[LogicalPlan] { def getTable(u: UnresolvedRelation): LogicalPlan = { try { catalog.lookupRelation(u.tableIdentifier, u.alias) } catch { case _: NoSuchTableException => u.failAnalysis(s"no such table ${u.tableName}") } } //输入(plan)logical 返回logical,transform是遍历各个节点,对每个节点应用该rule def apply(plan: LogicalPlan): LogicalPlan = plan transform { case [email protected](u: UnresolvedRelation, _, _, _, _) => i.copy(table = EliminateSubQueries(getTable(u))) case u: UnresolvedRelation =>//当遇到UnresolvedRelation时,通过在catalog里查找表名对应的真实的数据源是什么relation getTable(u) } } 而这个表名对应的relation是在dataFrame.registerTempTable(source)时候注册进去的。 dataFrame.registerTempTable(source)
且看dataFrame.registerTempTable
/** * Registers this [[DataFrame]] as a temporary table using the given name. The lifetime of this * temporary table is tied to the [[SQLContext]] that was used to create this DataFrame. * * @group basic * @since 1.3.0 */ def registerTempTable(tableName: String): Unit = { sqlContext.registerDataFrameAsTable(this, tableName) } /** * Registers the given [[DataFrame]] as a temporary table in the catalog. Temporary tables exist * only during the lifetime of this instance of SQLContext. */ private[sql] def registerDataFrameAsTable(df: DataFrame, tableName: String): Unit = { catalog.registerTable(Seq(tableName), df.logicalPlan)//一个表名对应1个logicalPlan }
而这个logicalPlan正是dataFrame里面的logicalPlan
DataFrame dataFrame = sqlContext.parquetFile(hdfsPath)//这个dataFrame里面的logicalPlan def parquetFile(paths: String*): DataFrame = { if (paths.isEmpty) { emptyDataFrame } else if (conf.parquetUseDataSourceApi) {//目前走这个分支 read.parquet(paths : _*) } else { DataFrame(this, parquet.ParquetRelation( paths.mkString(","), Some(sparkContext.hadoopConfiguration), this)) } } def parquet(paths: String*): DataFrame = { if (paths.isEmpty) { sqlContext.emptyDataFrame } else { val globbedPaths = paths.map(new Path(_)).flatMap(SparkHadoopUtil.get.globPath).toArray sqlContext.baseRelationToDataFrame( new ParquetRelation2( globbedPaths.map(_.toString), None, None, Map.empty[String, String])(sqlContext))//最终形成的正是ParquetRelation2 } }
然后我们看下日志打印:
plan-> 'Sort ['car_num ASC], false 'Aggregate ['dev_chnid], ['id,'dev_chnid,'dev_chnname,'car_num,'car_speed,'car_direct] 'Filter ('id > 1) 'UnresolvedRelation [test], None result-> 'Sort ['car_num ASC], false 'Aggregate ['dev_chnid], ['id,'dev_chnid,'dev_chnname,'car_num,'car_speed,'car_direct] 'Filter ('id > 1) Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$@51db8cdb
当应用rule=ResolveRelations之后,将UnresolvedRelation [test], None解析成
Subquery test
Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42][email protected]
3.2 ResolveReferences
解析节点的输出属性,每个LogicalPlan的输出都是一些字段。例如当select*出现时,需要把*代表的所有字段列举出来
object ResolveReferences extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case p: LogicalPlan if !p.childrenResolved => p // If the projection list contains Stars, expand it. case p @ Project(projectList, child) if containsStar(projectList) =>//如果出现*则需要把*扩展出来 Project( projectList.flatMap { case s: Star => s.expand(child.output, resolver) case Alias(f @ UnresolvedFunction(_, args), name) if containsStar(args) => val expandedArgs = args.flatMap { case s: Star => s.expand(child.output, resolver) case o => o :: Nil } Alias(child = f.copy(children = expandedArgs), name)() :: Nil case Alias(c @ CreateArray(args), name) if containsStar(args) => val expandedArgs = args.flatMap { case s: Star => s.expand(child.output, resolver) case o => o :: Nil } Alias(c.copy(children = expandedArgs), name)() :: Nil case Alias(c @ CreateStruct(args), name) if containsStar(args) => val expandedArgs = args.flatMap { case s: Star => s.expand(child.output, resolver) case o => o :: Nil } Alias(c.copy(children = expandedArgs), name)() :: Nil case o => o :: Nil }, child) case t: ScriptTransformation if containsStar(t.input) => t.copy( input = t.input.flatMap { case s: Star => s.expand(t.child.output, resolver) case o => o :: Nil } ) …… }
例如sql语句如下:
String sql = "SELECT * from test ";
则日志打印如下:
plan-> 'Project [*] Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] result-> Project [id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42]//将*解析成具体的列 Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences[email protected]
3.3 ResolveSortReferences
在select语言里,order by的属性往往在前面没写,查询的时候也需要把这些字段查出来,排序完毕之后再删除,还有当同时存在聚合函数和排序的时候,如果排序的字段不在聚合函数的字段中,则也要把对应的字段添加到聚合函数中:
object ResolveSortReferences extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case s @ Sort(ordering, global, p @ Project(projectList, child)) if !s.resolved && p.resolved => val (resolvedOrdering, missing) = resolveAndFindMissing(ordering, p, child) // If this rule was not a no-op, return the transformed plan, otherwise return the original. if (missing.nonEmpty) { // Add missing attributes and then project them away after the sort. Project(p.output, Sort(resolvedOrdering, global, Project(projectList ++ missing, child)))//把order中没有出现在p的输出列表的字段补充进p } else { logDebug(s"Failed to find $missing in ${p.output.mkString(", ")}") s // Nothing we can do here. Return original plan. } case s @ Sort(ordering, global, a @ Aggregate(grouping, aggs, child)) if !s.resolved && a.resolved => val unresolved = ordering.flatMap(_.collect { case UnresolvedAttribute(name) => name }) // A small hack to create an object that will allow us to resolve any references that // refer to named expressions that are present in the grouping expressions. val groupingRelation = LocalRelation( grouping.collect { case ne: NamedExpression => ne.toAttribute } ) val (resolvedOrdering, missing) = resolveAndFindMissing(ordering, a, groupingRelation) if (missing.nonEmpty) { // Add missing grouping exprs and then project them away after the sort. Project(a.output, Sort(resolvedOrdering, global, Aggregate(grouping, aggs ++ missing, child)))//把order中没有出现在聚合函数中的字段放到聚合函数中 } else { s // Nothing we can do here. Return original plan. } }
例如sql语句如下:
String sql = "SELECT dev_chnid from test order by id";
则日志打印如下:
plan-> 'Sort ['id ASC], true//id没有出现在Project中 Project [dev_chnid#26] Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] result-> Project [dev_chnid#26] Sort [id#0L ASC], true Project [dev_chnid#26,id#0L]//先统一一起查出来 Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveSortRefere[email protected]
3.4 ResolveFunctions
解析UDF(user definedfunction)用户自定义函数。Spark支持用户自定义函数,用户可以在Spark SQL 里自定义实际需要的UDF来处理数据。相信在使用Sparksql的人都遇到了Sparksql所支持的函数太少了的难处,除了最基本的函数,Sparksql所能支撑的函数很少,肯定不能满足正常的项目使用,UDF可以解决问题
那么如何使用用户自定义函数呢,先看段代码:
SQLContext sqlContext = new SQLContext(jsc); UDFRegistration udfRegistration = new UDFRegistration(sqlContext);//通过UDFRegistration进行注册 DataFrame dataFrame = sqlContext.parquetFile(hdfsPath); dataFrame.registerTempTable(source); udfRegistration.register("strlength", new UDF1<String, Integer>() { @Override public Integer call(String str) throws Exception { return (Integer)str.length(); } }, DataType.fromCaseClassString("IntegerType"));//返回对应字符串的长度 String sql = "SELECT strlength(dev_chnid) from test"; DataFrame result = sqlContext.sql(sql);
用户可以通过UDFRegistration针对某个字段类型进行注册自定义函数,那么ResolveFunctions是如何解析的?接着往下看:
object ResolveFunctions extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case q: LogicalPlan => q transformExpressions { case u @ UnresolvedFunction(name, children) if u.childrenResolved => registry.lookupFunction(name, children)//通过registry查找 } } } protected[sql] lazy val functionRegistry: FunctionRegistry = new SimpleFunctionRegistry(conf) class SimpleFunctionRegistry(val conf: CatalystConf) extends FunctionRegistry { val functionBuilders = StringKeyHashMap[FunctionBuilder](conf.caseSensitiveAnalysis) override def registerFunction(name: String, builder: FunctionBuilder): Unit = { functionBuilders.put(name, builder) } override def lookupFunction(name: String, children: Seq[Expression]): Expression = { functionBuilders(name)(children) } } class UDFRegistration private[sql] (sqlContext: SQLContext) extends Logging { /** * Register a user-defined function with 1 arguments. * @since 1.3.0 */ def register(name: String, f: UDF1[_, _], returnType: DataType) = {//内部最终还是通过functionRegistry进行注册的 functionRegistry.registerFunction( name, (e: Seq[Expression]) => ScalaUdf(f.asInstanceOf[UDF1[Any, Any]].call(_: Any), returnType, e)) } }
则日志打印如下:
plan-> 'Project ['strlength(dev_chnid#26) AS c0#43] Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] result-> Project [scalaUDF(dev_chnid#26) AS c0#43]//将strlength解析成scalaUDF Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$@2b8199b7
3.5 GlobalAggregates
解析select 中的全局聚合函数,例如select MAX(ID)。
object GlobalAggregates extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case Project(projectList, child) if containsAggregates(projectList) =>//如果包含聚合表达式,则将Project转变为Aggregate Aggregate(Nil, projectList, child) } def containsAggregates(exprs: Seq[Expression]): Boolean = { exprs.foreach(_.foreach { case agg: AggregateExpression => return true case _ => }) false } }
例如sql语句如下:
String sql = "SELECT MAX(id) from test";
则日志打印如下:
16-07-19 14:17:59,708 INFO org.apache.spark.sql.SQLContext$$anon$1(Logging.scala:59) ## plan-> 'Project [MAX(id#0L) AS c0#43L] Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42][email protected] result-> Aggregate [MAX(id#0L) AS c0#43L]//将Project解析成Aggragate Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42][email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$GlobalAggregates$@4a9e419a
3.6 UnresolvedHavingClauseAttributes
解析having子句后面的过滤条件,如果该过滤字段没有出现在select 之后的话,则补齐。
object UnresolvedHavingClauseAttributes extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case filter @ Filter(havingCondition, aggregate @ Aggregate(_, originalAggExprs, _)) if aggregate.resolved && containsAggregate(havingCondition) => { val evaluatedCondition = Alias(havingCondition, "havingCondition")() val aggExprsWithHaving = evaluatedCondition +: originalAggExprs//合并filter中的过滤字段 Project(aggregate.output, Filter(evaluatedCondition.toAttribute, aggregate.copy(aggregateExpressions = aggExprsWithHaving)))//将其作为聚合函数的输出 } } protected def containsAggregate(condition: Expression): Boolean = condition .collect { case ae: AggregateExpression => ae } .nonEmpty }
例如sql语句如下:
String sql = "SELECT SUM(car_speed) from test group by dev_chnname HAVING SUM(id) > 1";//id没有出现在select 之后
则日志打印如下:
16-07-19 15:41:43,410 INFO org.apache.spark.sql.SQLContext$$anon$1(Logging.scala:59) ## plan-> 'Filter (SUM('id) > 1) Aggregate [dev_chnname#4], [SUM(car_speed#8) AS c0#43] Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] result-> 'Project [c0#43] 'Filter 'havingCondition 'Aggregate [dev_chnname#4], [(SUM('id) > 1) AS havingCondition#44,SUM(car_speed#8) AS c0#43]//将SUM(id)下推到聚合函数这里 Subquery test Relation[id#0L,dev_id#1,dev_chnnum#2L,dev_name#3,dev_chnname#4,car_num#5,car_numtype#6,car_numcolor#7,car_speed#8,car_type#9,car_color#10,car_length#11L,car_direct#12,car_way_code#13,cap_time#14L,cap_date#15L,inf_note#16,max_speed#17,min_speed#18,car_img_url#19,car_img1_url#20,car_img2_url#21,car_img3_url#22,car_img4_url#23,car_img5_url#24,rec_stat#25,dev_chnid#26,car_img_count#27,save_flag#28,dc_cleanflag#29,pic_id#30,car_img_plate_top#31L,car_img_plate_left#32L,car_img_plate_bottom#33L,car_img_plate_right#34L,car_brand#35L,issafetybelt#36,isvisor#37,bind_stat#38,car_num_pic#39,combined_pic_url#40,verify_memo#41,rec_stat_tmp#42] [email protected] rule->org.apache.spark.sql.catalyst.analysis.Analyzer$UnresolvedHavingC[email protected]
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/9311.html