针对大批量插入Hbase的场景,如果单条记录插入的时候效率比较低下,如果可以利用Rdd生成Hfile的话,然后利用Bulk Load导入Hfile的话,则会大大提升导入的速度,废话不说,直接上代码:
1.利用Create创建表blog:create ‘blog’ ,’article’
2.创建数据文件 blog.txt
3.上传文件至hdfs
备注:因为之前文件已经上传了
4.Java版本代码
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapred.TableOutputFormat; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.mapreduce.Job; import org.apache.log4j.Logger; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.sql.*; import org.apache.spark.sql.hive.HiveContext; import org.apache.spark.sql.types.DataType; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import scala.Tuple2; import java.util.ArrayList; import java.util.List; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.TimeUnit; /** * Created by WangLiang on 2015/11/30. */ public class Test { private static Logger log = Logger.getLogger(HelloWorld.class); public static void main(String[] args) { try { System.setProperty("javax.xml.parsers.DocumentBuilderFactory", "com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl"); System.setProperty("javax.xml.parsers.SAXParserFactory", "com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl"); //项目内部自己的配置类,可以忽略,其实就是设置sparkConf,然后获取到JavaSparkContext String sparkMaster = Configure.instance.get("sparkMaster"); String sparkJarAddress = Configure.instance.get("sparkJarAddress"); String sparkExecutorMemory = Configure.instance.get("sparkExecutorMemory"); String sparkCoresMax = Configure.instance.get("sparkCoresMax"); String sparkLocalDir = Configure.instance.get("sparkLocalDir"); log.info("initialize parameters"); log.info("sparkMaster:" + sparkMaster); log.info("sparkJarAddress:" + sparkJarAddress); log.info("sparkExecutorMemory:" + sparkExecutorMemory); log.info("sparkCoresMax:" + sparkCoresMax); log.info("sparkLocalDir:" + sparkLocalDir); SparkConf sparkConf = new SparkConf().setAppName("dse load application in Java"); sparkConf.setMaster(sparkMaster); if (!sparkJarAddress.isEmpty() && !sparkMaster.contains("local")) { sparkConf.set("spark.executor.memory", sparkExecutorMemory); // 16g sparkConf.set("spark.scheduler.mode", "FAIR"); sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); sparkConf.set("spark.kryo.registrator", "com.dahua.dse3.driver.dataset.DseKryoRegistrator"); sparkConf.set("spark.cores.max", sparkCoresMax); sparkConf.set("spark.akka.threads", "12"); sparkConf.set("spark.local.dir", sparkLocalDir); sparkConf.set("spark.shuffle.manager", "SORT"); sparkConf.set("spark.network.timeout", "120"); sparkConf.set("spark.rpc.lookupTimeout", "120"); sparkConf.set("spark.executor.extraClassPath", "/usr/dahua/spark/executelib/hbase-protocol-0.98.3-hadoop2.jar"); sparkConf.set("spark.executor.extraJavaOptions", "-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"); sparkConf.set("spark.driver.extraJavaOptions", "-XX:PermSize=256M -XX:MaxPermSize=512M"); sparkConf.set("spark.network.timeout", "120"); } JavaSparkContext jsc = new JavaSparkContext(sparkConf); if (!sparkJarAddress.isEmpty() && !sparkMaster.contains("local")) { jsc.addJar(sparkJarAddress); } Configuration conf = HBaseConfiguration.create(); String zk = "172.25.3.160,172.25.3.161,172.25.3.162"; String tableName = "blog"; conf.set("hbase.zookeeper.quorum", zk); HTable table = new HTable(conf, tableName); conf.set(TableOutputFormat.OUTPUT_TABLE, tableName); Job job = Job.getInstance(conf); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(KeyValue.class); HFileOutputFormat.configureIncrementalLoad(job, table); String hdfsPath = "hdfs://mycluster/raw/hfile/blog.txt"; JavaRDD<String> lines = jsc.textFile(hdfsPath); JavaPairRDD<ImmutableBytesWritable,KeyValue> hfileRdd = lines.mapToPair(new PairFunction<String, ImmutableBytesWritable, KeyValue>() { public Tuple2<ImmutableBytesWritable, KeyValue> call(String v1) throws Exception { String[] tokens = v1.split(" "); String rowkey = tokens[0]; String content = tokens[1]; KeyValue keyValue = new KeyValue(Bytes.toBytes(rowkey), Bytes.toBytes("article"), Bytes.toBytes("value"), Bytes.toBytes(content)); return new Tuple2<ImmutableBytesWritable, KeyValue>(new ImmutableBytesWritable(Bytes.toBytes(rowkey)), keyValue); } }); String hfilePath = "hdfs://mycluster/hfile/blog.hfile"; hfileRdd.saveAsNewAPIHadoopFile(hfilePath, ImmutableBytesWritable.class, KeyValue.class, HFileOutputFormat.class, conf); //利用bulk load hfile LoadIncrementalHFiles bulkLoader = new LoadIncrementalHFiles(conf); bulkLoader.doBulkLoad(new Path(hfilePath), table); }catch(Exception e){ e.printStackTrace(); }finally { ; } } }
5.scan blog表,数据已经入库
参考文章链接如下:http://www.openkb.info/2015/01/how-to-use-scala-on-spark-to-load-data.html
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/9317.html