spark入门之三 spark job提交详解大数据

上一篇主要介绍spark的application的提交流程,下面介绍spark job的提交;以collect job为例,如上节描述,spark-submit类中runMain方法中经过反射调用了自定义的jar包中的main方法,main方法中初始化sparkcontext,jar中最后一个action为collect为例说明流程,代码如下,collect 方法中sparkcontext 会调用runJob方法:

/**   
   * Return an array that contains all of the elements in this RDD.   
   */   
  def collect(): Array[T] = withScope {   
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)   
    Array.concat(results: _*)   
  }  

sparkcontext 为程序的运行入口,在初始化的时候,会分别创建DAGScheduler作业调度和taskScheduler任务调度,两级调度模块,其中作业调度模块基于任务阶段的高层调度模块。job提交流程首先调用sparkcontext的runJob方法;

spark入门之三 spark job提交详解大数据

 下一步DAGScheduler 中调用runJob方法,源码见下方;

spark入门之三 spark job提交详解大数据

下一步调用dagSchedule 类中submitJob()方法,源码见下方:

spark入门之三 spark job提交详解大数据

进入eventProcessLoop.post()方法中,把此提交时间放入到队列中

spark入门之三 spark job提交详解大数据

而eventProcessLoop的类是下图所示

spark入门之三 spark job提交详解大数据

并且会调用doOnReceive方法,并判断事件类型,最后掉用handlejobSubmitted方法,此方法中会生成stage,具体stage生成见下节源码

spark入门之三 spark job提交详解大数据 



DAGSchedule类自定义一个私有类继承了EventLoop类,

private[scheduler] class (dagScheduler: DAGScheduler) 
  extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging { 
 
  private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer 
 
  /** 
   * The main event loop of the DAG scheduler. 
   */ 
  //重写了onReceive方法 
  override def onReceive(event: DAGSchedulerEvent): Unit = { 
    val timerContext = timer.time() 
    try { 
      //调用此方法 
      doOnReceive(event) 
    } finally { 
      timerContext.stop() 
    } 
  } 
  // 调用此方法 
  private def doOnReceive(event: DAGSchedulerEvent): Unit = event match { 
    //判断是否为job提交 
    case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) => 
      //调用handleJobSubmitted方法 
      dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) 
 
    case MapStageSubmitted(jobId, dependency, callSite, listener, properties) => 
      dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties) 
 
    case StageCancelled(stageId) => 
      dagScheduler.handleStageCancellation(stageId) 
 
    case JobCancelled(jobId) => 
      dagScheduler.handleJobCancellation(jobId) 
 
    case JobGroupCancelled(groupId) => 
      dagScheduler.handleJobGroupCancelled(groupId) 
 
    case AllJobsCancelled => 
      dagScheduler.doCancelAllJobs() 
 
    case ExecutorAdded(execId, host) => 
      dagScheduler.handleExecutorAdded(execId, host) 
 
    case ExecutorLost(execId, reason) => 
      val filesLost = reason match { 
        case SlaveLost(_, true) => true 
        case _ => false 
      } 
      dagScheduler.handleExecutorLost(execId, filesLost) 
 
    case BeginEvent(task, taskInfo) => 
      dagScheduler.handleBeginEvent(task, taskInfo) 
 
    case GettingResultEvent(taskInfo) => 
      dagScheduler.handleGetTaskResult(taskInfo) 
 
    case completion: CompletionEvent => 
      dagScheduler.handleTaskCompletion(completion) 
 
    case TaskSetFailed(taskSet, reason, exception) => 
      dagScheduler.handleTaskSetFailed(taskSet, reason, exception) 
 
    case ResubmitFailedStages => 
      dagScheduler.resubmitFailedStages() 
  } 
 
  override def onError(e: Throwable): Unit = { 
    logError(" failed; shutting down SparkContext", e) 
    try { 
      dagScheduler.doCancelAllJobs() 
    } catch { 
      case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t) 
    } 
    dagScheduler.sc.stopInNewThread() 
  } 
 
  override def onStop(): Unit = { 
    // Cancel any active jobs in postStop hook 
    dagScheduler.cleanUpAfterSchedulerStop() 
  } 
}

最后调用的dagScheduler.handleJobSubmitted方法完成整个job的提交,stage的划分将在此方法进行,具体stage划分将在下一节介绍



原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/9398.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论