win下idea远程提交WordCount任务到HA集群详解大数据

一,环境配置

1,修改win下的host文件:即C:/Windows/System32/drivers/etc/host中添加集群中机子的ip

2,win下hadoop,并为win的环境变量配置hadoop_home,添加winutils.exe放到$HADOOP_HOME/bin下

3,使用idea新建maven项目,其中pom.xml设置如下:

<?xml version="1.0" encoding="UTF-8"?> 
<project xmlns="http://maven.apache.org/POM/4.0.0" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
    <modelVersion>4.0.0</modelVersion> 
 
    <groupId>big</groupId> 
    <artifactId>data</artifactId> 
    <version>1.0-SNAPSHOT</version> 
    <dependencies> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-common</artifactId> 
            <version>2.7.5</version> 
        </dependency> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-client</artifactId> 
            <version>2.7.5</version> 
        </dependency> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-hdfs</artifactId> 
            <version>2.7.5</version> 
        </dependency> 
       <!-- <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-hdfs-client</artifactId> 
            <version>2.7.5</version> 
        </dependency>--> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId> 
            <version>2.7.5</version> 
        </dependency> 
    </dependencies> 
 
</project>

4,拷贝ha集群中hadoop的配置文件到idea中resource中,hadoop的具体配置如下:

core-site.xml:

<?xml version="1.0" encoding="UTF-8"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<!-- 
  Licensed under the Apache License, Version 2.0 (the "License"); 
  you may not use this file except in compliance with the License. 
  You may obtain a copy of the License at 
 
    http://www.apache.org/licenses/LICENSE-2.0 
 
  Unless required by applicable law or agreed to in writing, software 
  distributed under the License is distributed on an "AS IS" BASIS, 
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
  See the License for the specific language governing permissions and 
  limitations under the License. See accompanying LICENSE file. 
--> 
 
<!-- Put site-specific property overrides in this file. --> 
<configuration> 
       <property> 
                <name>fs.defaultFS</name> 
                <value>hdfs://mycluster</value> 
       </property> 
       <property> 
                <name>ha.zookeeper.quorum</name> 
                <value>cent1:2181,cent2:2181,cent3:2181</value> 
        </property> 
       <!--<property> 
               <name>hadoop.tmp.dir</name> 
               <value>/opt/hadoop2</value> 
               <description>A base for other temporary   directories.</description> 
       </property>--> 
</configuration>

hdfs-site.xml:

<?xml version="1.0" encoding="UTF-8"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<!-- 
Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 
http://www.apache.org/licenses/LICENSE-2.0 
Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. See accompanying LICENSE file. 
--> 
<!-- Put site-specific property overrides in this file. --> 
<configuration> 
<property> 
<name>dfs.nameservices</name> 
<value>mycluster</value> 
</property> 
<property> 
<name>dfs.ha.namenodes.mycluster</name> 
<value>nn1,nn2</value> 
</property> 
<property> 
<name>dfs.namenode.rpc-address.mycluster.nn1</name> 
<value>cent1:9000</value> 
</property> 
<property> 
<name>dfs.namenode.rpc-address.mycluster.nn2</name> 
<value>cent2:9000</value> 
</property> 
<property> 
<name>dfs.namenode.http-address.mycluster.nn1</name> 
<value>cent1:50070</value> 
</property> 
<property> 
<name>dfs.namenode.http-address.mycluster.nn2</name> 
<value>cent2:50070</value> 
</property> 
<property> 
<name>dfs.namenode.shared.edits.dir</name> 
<value>qjournal://cent2:8485;cent3:8485;cent4:8485/mycluster</value> 
</property> 
<property> 
<name>dfs.client.failover.proxy.provider.mycluster</name> 
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> 
</property> 
<property> 
<name>dfs.ha.fencing.methods</name> 
<value>sshfence</value> 
</property> 
<property> 
<name>dfs.ha.fencing.ssh.private-key-files</name> 
<value>/root/.ssh/id_rsa</value> 
</property> 
<property> 
<name>dfs.journalnode.edits.dir</name> 
<value>/opt/jn/data</value> 
</property> 
<property> 
<name>dfs.ha.automatic-failover.enabled</name> 
<value>true</value> 
</property> 
<property> 
<name>dfs.permissions.enabled</name> 
<value>false</value> 
</property> 
</configuration>

mapred-site.xml:

<?xml version="1.0"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<!-- 
Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 
http://www.apache.org/licenses/LICENSE-2.0 
Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. See accompanying LICENSE file. 
--> 
<!-- Put site-specific property overrides in this file. --> 
<configuration> 
<property>  
<name>mapreduce.framework.name</name> 
<value>yarn</value> 
</property> 
</configuration>

yarn-site.xml:

<?xml version="1.0"?> 
<!-- 
Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 
http://www.apache.org/licenses/LICENSE-2.0 
Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. See accompanying LICENSE file. 
--> 
<configuration> 
<!-- Site specific YARN configuration properties --> 
<property> 
<name>yarn.nodemanager.aux-services</name> 
<value>mapreduce_shuffle</value> 
</property> 
<property>                                                                
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> 
<value>org.apache.hadoop.mapred.ShuffleHandler</value> 
</property> 
<property> 
<name>yarn.resourcemanager.hostname</name> 
<value>cent1</value> 
</property> 
</configuration>

log4j.properties:

# Licensed to the Apache Software Foundation (ASF) under one 
# or more contributor license agreements.  See the NOTICE file 
# distributed with this work for additional information 
# regarding copyright ownership.  The ASF licenses this file 
# to you under the Apache License, Version 2.0 (the 
# "License"); you may not use this file except in compliance 
# with the License.  You may obtain a copy of the License at 
# 
#     http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
# Define some default values that can be overridden by system properties 
hadoop.root.logger=INFO,console 
hadoop.log.dir=. 
hadoop.log.file=hadoop.log 
# Define the root logger to the system property "hadoop.root.logger". 
log4j.rootLogger=${hadoop.root.logger}, EventCounter 
# Logging Threshold 
log4j.threshold=ALL 
# Null Appender 
log4j.appender.NullAppender=org.apache.log4j.varia.NullAppender 
# 
# Rolling File Appender - cap space usage at 5gb. 
# 
hadoop.log.maxfilesize=256MB 
hadoop.log.maxbackupindex=20 
log4j.appender.RFA=org.apache.log4j.RollingFileAppender 
log4j.appender.RFA.File=${hadoop.log.dir}/${hadoop.log.file} 
log4j.appender.RFA.MaxFileSize=${hadoop.log.maxfilesize} 
log4j.appender.RFA.MaxBackupIndex=${hadoop.log.maxbackupindex} 
log4j.appender.RFA.layout=org.apache.log4j.PatternLayout 
# Pattern format: Date LogLevel LoggerName LogMessage 
log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n 
# Debugging Pattern format 
#log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n 
# 
# Daily Rolling File Appender 
# 
 
log4j.appender.DRFA=org.apache.log4j.DailyRollingFileAppender 
log4j.appender.DRFA.File=${hadoop.log.dir}/${hadoop.log.file} 
# Rollover at midnight 
log4j.appender.DRFA.DatePattern=.yyyy-MM-dd 
log4j.appender.DRFA.layout=org.apache.log4j.PatternLayout 
# Pattern format: Date LogLevel LoggerName LogMessage 
log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n 
# Debugging Pattern format 
#log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n 
# 
# console 
# Add "console" to rootlogger above if you want to use this  
# 
 
log4j.appender.console=org.apache.log4j.ConsoleAppender 
log4j.appender.console.target=System.err 
log4j.appender.console.layout=org.apache.log4j.PatternLayout 
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n 
# 
# TaskLog Appender 
# 
 
#Default values 
hadoop.tasklog.taskid=null 
hadoop.tasklog.iscleanup=false 
hadoop.tasklog.noKeepSplits=4 
hadoop.tasklog.totalLogFileSize=100 
hadoop.tasklog.purgeLogSplits=true 
hadoop.tasklog.logsRetainHours=12 
log4j.appender.TLA=org.apache.hadoop.mapred.TaskLogAppender 
log4j.appender.TLA.taskId=${hadoop.tasklog.taskid} 
log4j.appender.TLA.isCleanup=${hadoop.tasklog.iscleanup} 
log4j.appender.TLA.totalLogFileSize=${hadoop.tasklog.totalLogFileSize} 
log4j.appender.TLA.layout=org.apache.log4j.PatternLayout 
log4j.appender.TLA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n 
# 
# HDFS block state change log from block manager 
# 
# Uncomment the following to suppress normal block state change 
# messages from BlockManager in NameNode. 
#log4j.logger.BlockStateChange=WARN 
# 
#Security appender 
# 
hadoop.security.logger=INFO,NullAppender 
hadoop.security.log.maxfilesize=256MB 
hadoop.security.log.maxbackupindex=20 
log4j.category.SecurityLogger=${hadoop.security.logger} 
hadoop.security.log.file=SecurityAuth-${user.name}.audit 
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender  
log4j.appender.RFAS.File=${hadoop.log.dir}/${hadoop.security.log.file} 
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout 
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n 
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize} 
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex} 
# 
# Daily Rolling Security appender 
# 
log4j.appender.DRFAS=org.apache.log4j.DailyRollingFileAppender  
log4j.appender.DRFAS.File=${hadoop.log.dir}/${hadoop.security.log.file} 
log4j.appender.DRFAS.layout=org.apache.log4j.PatternLayout 
log4j.appender.DRFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n 
log4j.appender.DRFAS.DatePattern=.yyyy-MM-dd 
# 
# hadoop configuration logging 
# 
 
# Uncomment the following line to turn off configuration deprecation warnings. 
# log4j.logger.org.apache.hadoop.conf.Configuration.deprecation=WARN 
# 
# hdfs audit logging 
# 
hdfs.audit.logger=INFO,NullAppender 
hdfs.audit.log.maxfilesize=256MB 
hdfs.audit.log.maxbackupindex=20 
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=${hdfs.audit.logger} 
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=false 
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender 
log4j.appender.RFAAUDIT.File=${hadoop.log.dir}/hdfs-audit.log 
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout 
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n 
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize} 
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log.maxbackupindex} 
# 
# mapred audit logging 
# 
mapred.audit.logger=INFO,NullAppender 
mapred.audit.log.maxfilesize=256MB 
mapred.audit.log.maxbackupindex=20 
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.audit.logger} 
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false 
log4j.appender.MRAUDIT=org.apache.log4j.RollingFileAppender 
log4j.appender.MRAUDIT.File=${hadoop.log.dir}/mapred-audit.log 
log4j.appender.MRAUDIT.layout=org.apache.log4j.PatternLayout 
log4j.appender.MRAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n 
log4j.appender.MRAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize} 
log4j.appender.MRAUDIT.MaxBackupIndex=${mapred.audit.log.maxbackupindex} 
# Custom Logging levels 
#log4j.logger.org.apache.hadoop.mapred.JobTracker=DEBUG 
#log4j.logger.org.apache.hadoop.mapred.TaskTracker=DEBUG 
#log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=DEBUG 
# Jets3t library 
log4j.logger.org.jets3t.service.impl.rest.httpclient.RestS3Service=ERROR 
# AWS SDK & S3A FileSystem 
log4j.logger.com.amazonaws=ERROR 
log4j.logger.com.amazonaws.http.AmazonHttpClient=ERROR 
log4j.logger.org.apache.hadoop.fs.s3a.S3AFileSystem=WARN 
# 
# Event Counter Appender 
# Sends counts of logging messages at different severity levels to Hadoop Metrics. 
# 
log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter 
# 
# Job Summary Appender  
# 
# Use following logger to send summary to separate file defined by  
# hadoop.mapreduce.jobsummary.log.file : 
# hadoop.mapreduce.jobsummary.logger=INFO,JSA 
#  
hadoop.mapreduce.jobsummary.logger=${hadoop.root.logger} 
hadoop.mapreduce.jobsummary.log.file=hadoop-mapreduce.jobsummary.log 
hadoop.mapreduce.jobsummary.log.maxfilesize=256MB 
hadoop.mapreduce.jobsummary.log.maxbackupindex=20 
log4j.appender.JSA=org.apache.log4j.RollingFileAppender 
log4j.appender.JSA.File=${hadoop.log.dir}/${hadoop.mapreduce.jobsummary.log.file} 
log4j.appender.JSA.MaxFileSize=${hadoop.mapreduce.jobsummary.log.maxfilesize} 
log4j.appender.JSA.MaxBackupIndex=${hadoop.mapreduce.jobsummary.log.maxbackupindex} 
log4j.appender.JSA.layout=org.apache.log4j.PatternLayout 
log4j.appender.JSA.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n 
log4j.logger.org.apache.hadoop.mapred.JobInProgress$JobSummary=${hadoop.mapreduce.jobsummary.logger} 
log4j.additivity.org.apache.hadoop.mapred.JobInProgress$JobSummary=false 
# 
# Yarn ResourceManager Application Summary Log  
# 
# Set the ResourceManager summary log filename 
yarn.server.resourcemanager.appsummary.log.file=rm-appsummary.log 
# Set the ResourceManager summary log level and appender 
yarn.server.resourcemanager.appsummary.logger=${hadoop.root.logger} 
#yarn.server.resourcemanager.appsummary.logger=INFO,RMSUMMARY 
# To enable AppSummaryLogging for the RM,  
# set yarn.server.resourcemanager.appsummary.logger to  
# <LEVEL>,RMSUMMARY in hadoop-env.sh 
# Appender for ResourceManager Application Summary Log 
# Requires the following properties to be set 
#    - hadoop.log.dir (Hadoop Log directory) 
#    - yarn.server.resourcemanager.appsummary.log.file (resource manager app summary log filename) 
#    - yarn.server.resourcemanager.appsummary.logger (resource manager app summary log level and appender) 
 
log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger} 
log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=false 
log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender 
log4j.appender.RMSUMMARY.File=${hadoop.log.dir}/${yarn.server.resourcemanager.appsummary.log.file} 
log4j.appender.RMSUMMARY.MaxFileSize=256MB 
log4j.appender.RMSUMMARY.MaxBackupIndex=20 
log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout 
log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n 
# HS audit log configs 
#mapreduce.hs.audit.logger=INFO,HSAUDIT 
#log4j.logger.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=${mapreduce.hs.audit.logger} 
#log4j.additivity.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=false 
#log4j.appender.HSAUDIT=org.apache.log4j.DailyRollingFileAppender 
#log4j.appender.HSAUDIT.File=${hadoop.log.dir}/hs-audit.log 
#log4j.appender.HSAUDIT.layout=org.apache.log4j.PatternLayout 
#log4j.appender.HSAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n 
#log4j.appender.HSAUDIT.DatePattern=.yyyy-MM-dd 
# Http Server Request Logs 
#log4j.logger.http.requests.namenode=INFO,namenoderequestlog 
#log4j.appender.namenoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender 
#log4j.appender.namenoderequestlog.Filename=${hadoop.log.dir}/jetty-namenode-yyyy_mm_dd.log 
#log4j.appender.namenoderequestlog.RetainDays=3 
#log4j.logger.http.requests.datanode=INFO,datanoderequestlog 
#log4j.appender.datanoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender 
#log4j.appender.datanoderequestlog.Filename=${hadoop.log.dir}/jetty-datanode-yyyy_mm_dd.log 
#log4j.appender.datanoderequestlog.RetainDays=3 
#log4j.logger.http.requests.resourcemanager=INFO,resourcemanagerrequestlog 
#log4j.appender.resourcemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender 
#log4j.appender.resourcemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-resourcemanager-yyyy_mm_dd.log 
#log4j.appender.resourcemanagerrequestlog.RetainDays=3 
#log4j.logger.http.requests.jobhistory=INFO,jobhistoryrequestlog 
#log4j.appender.jobhistoryrequestlog=org.apache.hadoop.http.HttpRequestLogAppender 
#log4j.appender.jobhistoryrequestlog.Filename=${hadoop.log.dir}/jetty-jobhistory-yyyy_mm_dd.log 
#log4j.appender.jobhistoryrequestlog.RetainDays=3 
#log4j.logger.http.requests.nodemanager=INFO,nodemanagerrequestlog 
#log4j.appender.nodemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender 
#log4j.appender.nodemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-nodemanager-yyyy_mm_dd.log 
#log4j.appender.nodemanagerrequestlog.RetainDays=3

二,编写WordCount程序

import java.io.IOException; 
import java.net.URI; 
import java.util.StringTokenizer; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
public class WordCount { 
public static class TokenizerMapper 
extends Mapper<Object, Text, Text, IntWritable> { 
private final static IntWritable one = new IntWritable(1); 
private Text word = new Text(); 
public void map(Object key, Text value, Context context 
) throws IOException, InterruptedException { 
StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) { 
word.set(itr.nextToken()); 
context.write(word, one); 
} 
} 
} 
public static class IntSumReducer 
extends Reducer<Text, IntWritable, Text, IntWritable> { 
private IntWritable result = new IntWritable(); 
public void reduce(Text key, Iterable<IntWritable> values, 
Context context 
) throws IOException, InterruptedException { 
int sum = 0; 
for (IntWritable val : values) { 
sum += val.get(); 
} 
result.set(sum); 
context.write(key, result); 
} 
} 
public static void main(String[] args) throws Exception { 
Configuration conf = new Configuration(); 
System.setProperty("hadoop.home.dir", "E://softs//majorSoft//hadoop-2.7.5");//初始时解决winutils异常 
conf.set("mapreduce.app-submission.cross-platform", "true");//允许远程访问 
Path input = new Path(URI.create("hdfs://mycluster/testFile/wordCount")); 
Path output = new Path(URI.create("hdfs://mycluster/output")); 
Job job = Job.getInstance(conf, "word count"); 
job.setJar("E://bigData//hadoopDemo//out//artifacts//wordCount_jar//hadoopDemo.jar");//必须要先打包出jar包 
job.setJarByClass(WordCount.class); 
job.setMapperClass(TokenizerMapper.class); 
job.setCombinerClass(IntSumReducer.class); 
job.setReducerClass(IntSumReducer.class); 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(IntWritable.class); 
FileInputFormat.addInputPath(job, input); 
FileOutputFormat.setOutputPath(job, output); 
System.exit(job.waitForCompletion(true) ? 0 : 1); 
} 
}  

三,遇到的异常

1,RuntimeException, ClassNotFoundException: Class WordCount$Map not found . Mapper class issue 
job.setJar("WordCount.jar"); 
2,Exception message:/bin/bash:第0行fg:无任务控制  #表示运行远程访问格式 
conf.set(“mapreduce.app-submission.cross-platform”, “true”); 
和设置hdfs-site.xml 
<property> 
<name>dfs.permissions.enabled</name> 
<value>false</value> 
</property> 
3. java.io.IOException: Could not locate executable null/bin/winutils.exe in the Hadoop binaries. 
System.setProperty("hadoop.home.dir", "E://softs//majorSoft//hadoop-2.7.5"); 
4,无法访问hdfs权限和识别不到集群 
修改C:/Windows/System32/drivers/etc文件

 

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/9432.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论