Wordcount on YARN 一个MapReduce示例详解大数据

Hadoop YARN版本:2.2.0

关于hadoop yarn的环境搭建可以参考这篇博文:Hadoop 2.0安装以及不停集群加datanode

 

hadoop hdfs yarn伪分布式运行,有如下进程

1320 DataNode
1665 ResourceManager 1771 NodeManager 1195 NameNode 1487 SecondaryNameNode

 

写一个mapreduce示例,在yarn上跑,wordcount数单词示例

Wordcount on YARN 一个MapReduce示例详解大数据代码在github上:https://github.com/huahuiyang/yarn-demo

步骤一

我们要处理的输入如下,每行包含一个或多个单词,空格分开。可以用hadoop fs -put … 把本地文件放到hdfs上去,方便mapreduce程序读取

hadoop yarn 
mapreduce 
hello redis 
java hadoop 
hello world 
here we go

wordcount程序希望完成数单词任务,输出格式是 <单词  出现次数>

 

步骤二

新建一个工程,工程结构如下,这个是个maven管理的工程

Wordcount on YARN 一个MapReduce示例详解大数据

源代码如下:

pom.xml文件 
 
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
    <modelVersion>4.0.0</modelVersion> 
    <groupId>hadoop-yarn</groupId> 
    <artifactId>hadoop-demo</artifactId> 
    <version>0.0.1-SNAPSHOT</version> 
 
    <dependencies> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-mapreduce-client-core</artifactId> 
            <version>2.1.1-beta</version> 
        </dependency> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-common</artifactId> 
            <version>2.1.1-beta</version> 
        </dependency> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-mapreduce-client-common</artifactId> 
            <version>2.1.1-beta</version> 
        </dependency> 
        <dependency> 
            <groupId>org.apache.hadoop</groupId> 
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId> 
            <version>2.1.1-beta</version> 
        </dependency> 
    </dependencies> 
</project>

 

package com.yhh.mapreduce.wordcount; 
import java.io.IOException; 
 
import org.apache.hadoop.io.*; 
import org.apache.hadoop.mapred.*; 
 
public class WordCountMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text,IntWritable>  { 
 
    @Override 
    public void map(LongWritable key, Text value, 
            OutputCollector<Text, IntWritable> output, Reporter reporter) 
            throws IOException { 
         
        String line = value.toString(); 
        if(line != null) { 
            String[] words = line.split(" "); 
            for(String word:words) { 
                output.collect(new Text(word), new IntWritable(1)); 
            } 
        } 
         
    } 
 
}

 

package com.yhh.mapreduce.wordcount; 
 
import java.io.IOException; 
import java.util.Iterator; 
 
import org.apache.hadoop.io.*; 
import org.apache.hadoop.mapred.*; 
 
public class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable>{ 
 
    @Override 
    public void reduce(Text key, Iterator<IntWritable> values, 
            OutputCollector<Text, IntWritable> output, Reporter reporter) 
            throws IOException { 
        int count = 0; 
        while(values.hasNext()) { 
            values.next(); 
            count++; 
        } 
        output.collect(key, new IntWritable(count)); 
    } 
 
}

 

package com.yhh.mapreduce.wordcount; 
 
import java.io.IOException; 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapred.JobConf; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobClient; 
 
public class WordCount { 
    public static void main(String[] args) throws IOException { 
        if(args.length != 2) { 
            System.err.println("Error!"); 
            System.exit(1); 
        } 
         
        JobConf conf = new JobConf(WordCount.class); 
        conf.setJobName("word count mapreduce demo"); 
         
        conf.setMapperClass(WordCountMapper.class); 
        conf.setReducerClass(WordCountReducer.class); 
        conf.setOutputKeyClass(Text.class); 
        conf.setOutputValueClass(IntWritable.class); 
         
        FileInputFormat.addInputPath(conf, new Path(args[0])); 
        FileOutputFormat.setOutputPath(conf, new Path(args[1])); 
         
        JobClient.runJob(conf); 
         
    } 
 
}

 

步骤三

打包发布成jar,右击java工程,选择Export…,然后选择jar file生成目录,这边发布成wordcount.jar,然后上传到hadoop集群

[[email protected] ~]# ll wordcount.jar  
-rw-r--r--. 1 root root 4401 6月   1 22:05 wordcount.jar

运行mapreduce任务。命令如下

hadoop jar ~/wordcount.jar com.yhh.mapreduce.wordcount.WordCount data.txt /wordcount/result

可以用hadoop job -list看任务运行情况,运行成功大概会有如下输出

14/06/01 22:06:25 INFO mapreduce.Job: The url to track the job: http://hadoop-namenodenew:8088/proxy/application_1401631066126_0003/ 
14/06/01 22:06:25 INFO mapreduce.Job: Running job: job_1401631066126_0003 
14/06/01 22:06:33 INFO mapreduce.Job: Job job_1401631066126_0003 running in uber mode : false 
14/06/01 22:06:33 INFO mapreduce.Job:  map 0% reduce 0% 
14/06/01 22:06:40 INFO mapreduce.Job:  map 50% reduce 0% 
14/06/01 22:06:41 INFO mapreduce.Job:  map 100% reduce 0% 
14/06/01 22:06:47 INFO mapreduce.Job:  map 100% reduce 100% 
14/06/01 22:06:48 INFO mapreduce.Job: Job job_1401631066126_0003 completed successfully 
14/06/01 22:06:49 INFO mapreduce.Job: Counters: 43

 

然后mapreduce输出的任务结果如下,单词按照字典序排序

hadoop fs -cat /wordcount/result/part-00000 
 
go    1 
hadoop    2 
hello    2 
here    1 
java    1 
mapreduce    1 
redis    1 
we    1 
world    1 
yarn    1

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/9635.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论