SDP(13): Scala.Future – far from completion,绝不能用来做甩手掌柜详解编程语言

  在前面几篇关于数据库引擎的讨论里很多的运算函数都返回了scala.Future类型的结果,因为我以为这样就可以很方便的实现了non-blocking效果。无论任何复杂的数据处理操作,只要把它们包在一个Future{…}里扔给系统运算就算完事不理了,马上可以把关注放到编程的其它部分了。在3月17日的深圳scala用户meetup里我做了个关于scala函数式编程的分享,里面我提到现在使用最多的函数组件就是scala.Future了。我想这应该在scala用户群里是个比较普遍的现象:大家都认为这是实现non-blocking最直接的一种方式。不过当我在meetup后回想到scala.Future时突然意识到它是一种即时运算值strict-value,看看下面这个例子:

  import scala.concurrent.duration._ 
  val fs = Future {println("run now..."); System.currentTimeMillis() } 
                                         //> run now... 
                                         //| fs  : scala.concurrent.Future[Long] = List() 
  Await.result(fs, 1.second)             //> res0: Long = 1465907784714 
  Thread.sleep(1000) 
  Await.result(fs, 1.second)             //> res1: Long = 1465907784714

可以看到fs是在Future构建时即时运算的,而且只会运算一次。如果scala Future中包括了能产生副作用的代码,在构建时就会立即产生副作用。所以我们是无法使用scala Future来编写纯函数的,如下:

val progA:Future[A] = for { 
    b <- readFromB 
    _ <- writeToLocationA(a) 
    r <- getResult 
} yield r 
 
/* location A content updated */ 
 
... /* later */ 
 
val progB: Future[B] = for { 
    a <- readFromA 
    _ <- updateLocationA 
    c <- getResult 
} 
 
... 
 
val program: Future[Unit] = for { 
    _ <- progA 
    _ <- progB 
} yield()

在上面这个例子里最终的目的是运算program:由progA,progB两个子程序组成。这两个子程序在构建的时候已经开始了运算,随时都会更新localionA产生副作用。想象一下如果progA,progB是埋藏在其它一大堆源代码里的话program的运算结果肯定是无法预测的。换言之用Future来进行函数式组合就是在给自己挖坑嘛,最起码要记住这些Future的构建顺序,而这个要求在大型的协作开发软件工程里基本上是不可能的事。除了无法安全进行函数组合外scala.Future还缺少运算和线程控制的功能,比如:

无法控制什么时候开始运算

无法控制在在哪个线程运算

无法终止开始运算的程序

缺少有效的异常处理机制如fallback,retry等

scalaz和monix函数组件库里都提供了Task来辅助Future实现函数组合。scalaz.Task是基于scalaz.Future的:

sealed abstract class Future[+A] { 
... 
object Future { 
  case class Now[+A](a: A) extends Future[A] 
  case class Async[+A](onFinish: (A => Trampoline[Unit]) => Unit) extends Future[A] 
  case class Suspend[+A](thunk: () => Future[A]) extends Future[A] 
  case class BindSuspend[A,B](thunk: () => Future[A], f: A => Future[B]) extends Future[B] 
  case class BindAsync[A,B](onFinish: (A => Trampoline[Unit]) => Unit, 
                            f: A => Future[B]) extends Future[B] 
...

scalaz.Future[A]明显就是个Free Monad。它的结构化表达方式分别有Now,Async,Suspend,BindSuspend,BindAsync。我们可以用这些结构实现flatMap函数,所以Future就是Free Monad:

def flatMap[B](f: A => Future[B]): Future[B] = this match { 
    case Now(a) => Suspend(() => f(a)) 
    case Suspend(thunk) => BindSuspend(thunk, f) 
    case Async(listen) => BindAsync(listen, f) 
    case BindSuspend(thunk, g) => 
      Suspend(() => BindSuspend(thunk, g andThen (_ flatMap f))) 
    case BindAsync(listen, g) => 
      Suspend(() => BindAsync(listen, g andThen (_ flatMap f))) 
  }

因为free structure类型支持算式/算法关注分离,我们可以用scalaz.Future来描述程序功能而不涉及正真运算。这样,在上面那个例子里如果progA,progB是Task类型的,那么program的构建就是安全的,因为我们最后是用Task.run来真正进行运算产生副作用的。scalaz.Task又在scalaz.Future功能基础上再增加了异常处理等功能。

monix.Task采取了延迟运算的方式来实现算式/算法分离,下面是这个类型的基础构建结构:

  /** [[Task]] state describing an immediate synchronous value. */ 
  private[eval] final case class Now[A](value: A) extends Task[A] {...} 
  /** [[Task]] state describing an immediate synchronous value. */ 
  private[eval] final case class Eval[A](thunk: () => A) 
    extends Task[A] 
 
  /** Internal state, the result of [[Task.defer]] */ 
  private[eval] final case class Suspend[+A](thunk: () => Task[A]) 
    extends Task[A] 
 
  /** Internal [[Task]] state that is the result of applying `flatMap`. */ 
  private[eval] final case class FlatMap[A, B](source: Task[A], f: A => Task[B]) 
    extends Task[B] 
 /** Internal [[Coeval]] state that is the result of applying `map`. */ 
  private[eval] final case class Map[S, +A](source: Task[S], f: S => A, index: Int) 
    extends Task[A] with (S => Task[A]) { 
 
    def apply(value: S): Task[A] = 
      new Now(f(value)) 
    override def toString: String = 
      super[Task].toString 
  } 
 
  /** Constructs a lazy [[Task]] instance whose result will 
    * be computed asynchronously. 
    * 
    * Unsafe to build directly, only use if you know what you're doing. 
    * For building `Async` instances safely, see [[create]]. 
    */ 
  private[eval] final case class Async[+A](register: (Context, Callback[A]) => Unit) 
    extends Task[A]  

下面的例子里示范了如果用这些结构来构件monix.Task: 

object Task extends TaskInstancesLevel1 { 
  /** Returns a new task that, when executed, will emit the result of 
    * the given function, executed asynchronously. 
    * 
    * This operation is the equivalent of: 
    * {{{ 
    *   Task.eval(f).executeAsync 
    * }}} 
    * 
    * @param f is the callback to execute asynchronously 
    */ 
  def apply[A](f: => A): Task[A] = 
    eval(f).executeAsync 
 
  /** Returns a `Task` that on execution is always successful, emitting 
    * the given strict value. 
    */ 
  def now[A](a: A): Task[A] = 
    Task.Now(a) 
 
  /** Lifts a value into the task context. Alias for [[now]]. */ 
  def pure[A](a: A): Task[A] = now(a) 
 
  /** Returns a task that on execution is always finishing in error 
    * emitting the specified exception. 
    */ 
  def raiseError[A](ex: Throwable): Task[A] = 
    Error(ex) 
 
  /** Promote a non-strict value representing a Task to a Task of the 
    * same type. 
    */ 
  def defer[A](fa: => Task[A]): Task[A] = 
    Suspend(fa _) 
...} 
    source match { 
      case Task.Now(v) => F.pure(v) 
      case Task.Error(e) => F.raiseError(e) 
      case Task.Eval(thunk) => F.delay(thunk()) 
      case Task.Suspend(thunk) => F.suspend(to(thunk())) 
      case other => suspend(other)(F) 
    }

这个Suspend结构就是延迟运算的核心。monix.Task是一套新出现的解决方案,借鉴了许多scalaz.Task的概念和方法同时又加入了很多优化、附加的功能,并且github更新也很近期。使用monix.Task应该是一个正确的选择。

首先我们必须解决scala.Future与monix.Task之间的转换:

  import monix.eval.Task 
  import monix.execution.Scheduler.Implicits.global 
   
  final class FutureToTask[A](x: => Future[A]) { 
    def asTask: Task[A] = Task.deferFuture[A(x) 
  } 
 
  final class TaskToFuture[A](x: => Task[A]) { 
    def asFuture: Future[A] = x.runAsync 
  }

下面是一个完整的Task用例:

import scala.concurrent._ 
import scala.util._ 
import scala.concurrent.duration._ 
import monix.eval.Task 
import monix.execution._ 
object MonixTask extends App { 
import monix.execution.Scheduler.Implicits.global 
 
  // Executing a sum, which (due to the semantics of apply) 
  // will happen on another thread. Nothing happens on building 
  // this instance though, this expression is pure, being 
  // just a spec! Task by default has lazy behavior ;-) 
  val task = Task { 1 + 1 } 
 
  // Tasks get evaluated only on runAsync! 
  // Callback style: 
  val cancelable = task.runOnComplete { 
      case Success(value) => 
        println(value) 
      case Failure(ex) => 
        System.out.println(s"ERROR: ${ex.getMessage}") 
  } 
  //=> 2 
 
  // If we change our mind... 
  cancelable.cancel() 
 
  // Or you can convert it into a Future 
  val future: CancelableFuture[Int] = 
    task.runAsync 
 
  // Printing the result asynchronously 
  future.foreach(println) 
  //=> 2 
 
  val task = Task.now { println("Effect"); "Hello!" } 
  //=> Effect 
  // task: monix.eval.Task[String] = Delay(Now(Hello!)) 
}

下面我们就看看各种Task的构建方法:

  /* ------ taskNow ----*/ 
  val taskNow = Task.now { println("Effect"); "Hello!" } 
  //=> Effect 
  // taskNow: monix.eval.Task[String] = Delay(Now(Hello!)) 
 
  /* --------taskDelay possible another on thread ------*/ 
  val taskDelay = Task { println("Effect"); "Hello!" } 
  // taskDelay: monix.eval.Task[String] = Delay(Always(<function0>)) 
 
  taskDelay.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  // The evaluation (and thus all contained side effects) 
  // gets triggered on each runAsync: 
  taskDelay.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  /* --------taskOnce ------- */ 
  val taskOnce = Task.evalOnce { println("Effect"); "Hello!" } 
  // taskOnce: monix.eval.Task[String] = EvalOnce(<function0>) 
 
  taskOnce.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  // Result was memoized on the first run! 
  taskOnce.runAsync.foreach(println) 
  //=> Hello! 
 
  /* --------taskFork ------- */ 
  // this guarantees that our task will get executed asynchronously: 
  val task = Task(Task.eval("Hello!")).executeAsync 
  //val task = Task.fork(Task.eval("Hello!")) 
 
  // The default scheduler 
  import monix.execution.Scheduler.Implicits.global 
 
  // Creating a special scheduler meant for I/O 
  import monix.execution.Scheduler 
  lazy val io = Scheduler.io(name="my-io") 
  //Then we can manage what executes on which: 
 
  // Override the default Scheduler by fork: 
  val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}")) 
  val forked = source.executeOn(io,true) 
  // val forked = Task.fork(source, io) 
 
  source.runAsync 
  //=> Running on thread: ForkJoinPool-1-worker-1 
  forked.runAsync 
  //=> Running on thread: my-io-4 
 
  /* --------taskError ------- */ 
  import scala.concurrent.TimeoutException 
 
  val taskError = Task.raiseError[Int](new TimeoutException) 
  // error: monix.eval.Task[Int] = 
  //   Delay(Error(java.util.concurrent.TimeoutException)) 
 
  taskError.runOnComplete(result => println(result)) 
  //=> Failure(java.util.concurrent.TimeoutException)

下面是一些控制函数:

  final def doOnFinish(f: Option[Throwable] => Task[Unit]): Task[A] = 
  final def doOnCancel(callback: Task[Unit]): Task[A] = 
  final def onCancelRaiseError(e: Throwable): Task[A] = 
  final def onErrorRecoverWith[B >: A](pf: PartialFunction[Throwable, Task[B]]): Task[B] = 
  final def onErrorHandleWith[B >: A](f: Throwable => Task[B]): Task[B] = 
  final def onErrorFallbackTo[B >: A](that: Task[B]): Task[B] = 
  final def restartUntil(p: (A) => Boolean): Task[A] = 
  final def onErrorRestart(maxRetries: Long): Task[A] = 
  final def onErrorRestartIf(p: Throwable => Boolean): Task[A] = 
  final def onErrorRestartLoop[S, B >: A](initial: S)(f: (Throwable, S, S => Task[B]) => Task[B]): Task[B] = 
  final def onErrorHandle[U >: A](f: Throwable => U): Task[U] = 
  final def onErrorRecover[U >: A](pf: PartialFunction[Throwable, U]): Task[U] =

Task是通过asyncRun和runSync来进行异步、同步实际运算的: 

  def runAsync(implicit s: Scheduler): CancelableFuture[A] = 
  def runAsync(cb: Callback[A])(implicit s: Scheduler): Cancelable = 
  def runAsyncOpt(implicit s: Scheduler, opts: Options): CancelableFuture[A] = 
  def runAsyncOpt(cb: Callback[A])(implicit s: Scheduler, opts: Options): Cancelable = 
  final def runSyncMaybe(implicit s: Scheduler): Either[CancelableFuture[A], A] = 
  final def runSyncMaybeOpt(implicit s: Scheduler, opts: Options): Either[CancelableFuture[A], A] =  
  final def runSyncUnsafe(timeout: Duration) 
    (implicit s: Scheduler, permit: CanBlock): A = 
  final def runSyncUnsafeOpt(timeout: Duration) 
    (implicit s: Scheduler, opts: Options, permit: CanBlock): A = 
  final def runOnComplete(f: Try[A] => Unit)(implicit s: Scheduler): Cancelable =

下面示范了两个通常的Task运算方法:

  val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second) 
  println(task1.runSyncUnsafe(2 seconds)) 
   
  task1.runOnComplete { 
    case Success(r) => println(s"result: $r") 
    case Failure(e) => println(e.getMessage) 
  }

下面是本次示范的源代码:

import scala.util._ 
import scala.concurrent.duration._ 
import monix.eval.Task 
import monix.execution._ 
object MonixTask extends App { 
import monix.execution.Scheduler.Implicits.global 
 
 
 
  // Executing a sum, which (due to the semantics of apply) 
  // will happen on another thread. Nothing happens on building 
  // this instance though, this expression is pure, being 
  // just a spec! Task by default has lazy behavior ;-) 
  val task = Task { 1 + 1 } 
 
  // Tasks get evaluated only on runAsync! 
  // Callback style: 
  val cancelable = task.runOnComplete { 
      case Success(value) => 
        println(value) 
      case Failure(ex) => 
        System.out.println(s"ERROR: ${ex.getMessage}") 
  } 
  //=> 2 
 
  // If we change our mind... 
  cancelable.cancel() 
 
  // Or you can convert it into a Future 
  val future: CancelableFuture[Int] = 
    task.runAsync 
 
  // Printing the result asynchronously 
  future.foreach(println) 
  //=> 2 
 
  /* ------ taskNow ----*/ 
  val taskNow = Task.now { println("Effect"); "Hello!" } 
  //=> Effect 
  // taskNow: monix.eval.Task[String] = Delay(Now(Hello!)) 
 
  /* --------taskDelay possible another on thread ------*/ 
  val taskDelay = Task { println("Effect"); "Hello!" } 
  // taskDelay: monix.eval.Task[String] = Delay(Always(<function0>)) 
 
  taskDelay.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  // The evaluation (and thus all contained side effects) 
  // gets triggered on each runAsync: 
  taskDelay.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  /* --------taskOnce ------- */ 
  val taskOnce = Task.evalOnce { println("Effect"); "Hello!" } 
  // taskOnce: monix.eval.Task[String] = EvalOnce(<function0>) 
 
  taskOnce.runAsync.foreach(println) 
  //=> Effect 
  //=> Hello! 
 
  // Result was memoized on the first run! 
  taskOnce.runAsync.foreach(println) 
  //=> Hello! 
 
  /* --------taskFork ------- */ 
  // this guarantees that our task will get executed asynchronously: 
  val task = Task(Task.eval("Hello!")).executeAsync 
  //val task = Task.fork(Task.eval("Hello!")) 
 
  // The default scheduler 
  import monix.execution.Scheduler.Implicits.global 
 
  // Creating a special scheduler meant for I/O 
  import monix.execution.Scheduler 
  lazy val io = Scheduler.io(name="my-io") 
  //Then we can manage what executes on which: 
 
  // Override the default Scheduler by fork: 
  val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}")) 
  val forked = source.executeOn(io,true) 
  // val forked = Task.fork(source, io) 
 
  source.runAsync 
  //=> Running on thread: ForkJoinPool-1-worker-1 
  forked.runAsync 
  //=> Running on thread: my-io-4 
 
  /* --------taskError ------- */ 
  import scala.concurrent.TimeoutException 
 
  val taskError = Task.raiseError[Int](new TimeoutException) 
  // error: monix.eval.Task[Int] = 
  //   Delay(Error(java.util.concurrent.TimeoutException)) 
 
  taskError.runOnComplete(result => println(result)) 
  //=> Failure(java.util.concurrent.TimeoutException) 
 
   
 
  val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second) 
  println(task1.runSyncUnsafe(2 seconds)) 
 
  task1.runOnComplete { 
    case Success(r) => println(s"result: $r") 
    case Failure(e) => println(e.getMessage) 
  } 
 
}

 

 

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/industrynews/12804.html

(0)
上一篇 2021年7月19日 14:54
下一篇 2021年7月19日 14:55

相关推荐

发表回复

登录后才能评论