Scalaz(44)- concurrency :scalaz Future,尚不完整的多线程类型详解编程语言

scala已经配备了自身的Future类。我们先举个例子来了解scala Future的具体操作: 

 1 import scala.concurrent._ 
 2 import ExecutionContext.Implicits.global 
 3 object scalafuture { 
 4   def dbl(i: Int): Future[Int] = Future { Thread.sleep(1000) ; i + i } 
 5                                       //> dbl: (i: Int)scala.concurrent.Future[Int] 
 6   val fdbl = dbl(3)                   //> fdbl  : scala.concurrent.Future[Int] = List() 
 7   fdbl.onSuccess { 
 8     case a => println(s"${a/2} + ${a/2} = $a") 
 9   } 
10   println("calculating ...")          //> calculating ... 
11   Thread.sleep(2000)                  //> 3 + 3 = 6 
12 }

 这是一个标准的异步运算;在成功完成运算事件上绑定callback来获取在其它线程中的运算结果。我们也可以进行异常处理:

1   val fdz = Future { 3 / 0 }      //> fdz  : scala.concurrent.Future[Int] = List() 
2   fdz.onFailure { 
3     case e => println(s"error message {${e.getMessage}}") 
4   } 
5   Thread.sleep(100)               //> error message {/ by zero}

又或者同时绑定运算成功和失败事件的callback函数:

1   import scala.util.{Success, Failure} 
2   fdz onComplete { 
3     case Success(a) => println(s"${a/2} + ${a/2} = $a") 
4     case Failure(e) => println(s"error message {${e.getMessage}}") 
5   } 
6   Thread.sleep(100)               //> error message {/ by zero}

 scala Future 实现了flatMap,我们可以把几个Future组合起来用:

 1   def dbl(i: Int): Future[Int] = Future { Thread.sleep(1000); i + i } 
 2                                                   //> dbl: (i: Int)scala.concurrent.Future[Int] 
 3   def sqr(i: Int): Future[Int] = Future { i * i } //> sqr: (i: Int)scala.concurrent.Future[Int] 
 4   def sum(a: Int, b: Int): Future[Int] = Future { a + b } 
 5                                           //> sum: (a: Int, b: Int)scala.concurrent.Future[Int] 
 6   val fsum = for { 
 7     a <- dbl(3) 
 8     b <- sqr(a) 
 9     c <- sum(a,b) 
10   } yield c                               //> fsum  : scala.concurrent.Future[Int] = List() 
11    
12   fsum onSuccess { case c => println(s"the combined result is: $c") } 
13   Thread.sleep(2000)                     //> the combined result is: 42

scala Future利用flatMap实现了流程运算:先运算dbl再sqr再sum,这个顺序是固定的即使它们可能在不同的线程里运算,因为sqr依赖dbl的结果,而sum又依赖dbl和sqr的结果。

好了,既然scala Future的功能已经比较完善了,那么scalaz的Future又有什么不同的特点呢?首先,细心一点可以发现scala Future是即时运算的,从下面的例子里可以看出:

1   import scala.concurrent.duration._ 
2   val fs = Future {println("run now..."); System.currentTimeMillis() } 
3                                          //> run now... 
4                                          //| fs  : scala.concurrent.Future[Long] = List() 
5   Await.result(fs, 1.second)             //> res0: Long = 1465907784714 
6   Thread.sleep(1000) 
7   Await.result(fs, 1.second)             //> res1: Long = 1465907784714

可以看到fs是在Future构建时即时运算的,而且只会运算一次。如果scala Future中包括了能产生副作用的代码,在构建时就会立即产生副作用。所以我们是无法使用scala Future来编写纯函数的,那么在scalaz里就必须为并发编程提供一个与scala Future具同等功能但又不会立即产生副作用的类型了,这就是scalaz版本的Future。我们看看scalaz是如何定义Future的:scalaz.concurrent/Future.scala

sealed abstract class Future[+A] { 
... 
object Future { 
  case class Now[+A](a: A) extends Future[A] 
  case class Async[+A](onFinish: (A => Trampoline[Unit]) => Unit) extends Future[A] 
  case class Suspend[+A](thunk: () => Future[A]) extends Future[A] 
  case class BindSuspend[A,B](thunk: () => Future[A], f: A => Future[B]) extends Future[B] 
  case class BindAsync[A,B](onFinish: (A => Trampoline[Unit]) => Unit, 
                            f: A => Future[B]) extends Future[B] 
...

Future[A]就是个Free Monad。它的结构化表达方式分别有Now,Async,Suspend,BindSuspend,BindAsync。我们可以用这些结构实现flatMap函数,所以Future就是Free Monad:

 

  def flatMap[B](f: A => Future[B]): Future[B] = this match { 
    case Now(a) => Suspend(() => f(a)) 
    case Suspend(thunk) => BindSuspend(thunk, f) 
    case Async(listen) => BindAsync(listen, f) 
    case BindSuspend(thunk, g) => 
      Suspend(() => BindSuspend(thunk, g andThen (_ flatMap f))) 
    case BindAsync(listen, g) => 
      Suspend(() => BindAsync(listen, g andThen (_ flatMap f))) 
  }

 free structure类型可以支持算式/算法关注分离,也就是说我们可以用scalaz Future来描述程序功能而不涉及正真运算。scalaz Future的构建方式如下:

 1 import scalaz._ 
 2 import Scalaz._ 
 3 import scalaz.concurrent._ 
 4 import scala.concurrent.duration._ 
 5 object scalazFuture { 
 6 val fnow = Future.now {println("run..."); System.currentTimeMillis()} 
 7                                           //> run... 
 8                                           //| fnow  : scalaz.concurrent.Future[Long] = Now(1465909860301) 
 9 val fdelay = Future.delay {println("run..."); System.currentTimeMillis()} 
10                                           //> fdelay  : scalaz.concurrent.Future[Long] = Suspend(<function0>) 
11 val fapply = Future {println("run..."); System.currentTimeMillis()} 
12                                           //> fapply  : scalaz.concurrent.Future[Long] = Async(<function1>)

可以看到fnow是个即时运算的构建器,而这个now就是一个lift函数, 它负责把一个普通无副作用运算升格成Future。fdelay,fapply分别把运算存入trampoline进行结构化了。我们必须另外运算trampoline来运行结构内的运算:

 1 fdelay.run                                        //> run... 
 2                                                   //| res0: Long = 1465910524847 
 3 Thread.sleep(1000) 
 4 fdelay.run                                        //> run... 
 5                                                   //| res1: Long = 1465910525881 
 6 fapply.run                                        //> run... 
 7                                                   //| res2: Long = 1465910525883 
 8 Thread.sleep(1000) 
 9 fapply.run                                        //> run... 
10                                                   //| res3: Long = 1465910526884

scalaz Future只有在运算时才会产生副作用,而且可以多次运算。

我们可以用即时(blocking)、异步、定时方式来运算Future:

 1 fapply.unsafePerformSync                          //> run... 
 2                                                   //| res4: Long = 1465958049118 
 3 fapply.unsafePerformAsync { 
 4   case a => println(a) 
 5 } 
 6 Thread.sleep(1000) 
 7 fapply.unsafePerformSyncFor(1 second)             //> run... 
 8                                                   //| 1465958051126 
 9                                                   //| run... 
10                                                   //| res5: Long = 1465958052172

结构化状态Async代表了scalaz Future的多线程处理特性:

/** 
   * Create a `Future` from an asynchronous computation, which takes the form 
   * of a function with which we can register a callback. This can be used 
   * to translate from a callback-based API to a straightforward monadic 
   * version. See `Task.async` for a version that allows for asynchronous 
   * exceptions. 
   */ 
  def async[A](listen: (A => Unit) => Unit): Future[A] = 
    Async((cb: A => Trampoline[Unit]) => listen { a => cb(a).run }) 
 
  /** Create a `Future` that will evaluate `a` using the given `ExecutorService`. */ 
  def apply[A](a: => A)(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Future[A] = Async { cb => 
    pool.submit { new Callable[Unit] { def call = cb(a).run }} 
  } 
 
  /** Create a `Future` that will evaluate `a` after at least the given delay. */ 
  def schedule[A](a: => A, delay: Duration)(implicit pool: ScheduledExecutorService = 
      Strategy.DefaultTimeoutScheduler): Future[A] = 
    Async { cb => 
      pool.schedule(new Callable[Unit] { 
        def call = cb(a).run 
      }, delay.toMillis, TimeUnit.MILLISECONDS) 
    }

我们看到apply和schedule在构建Future时对运算线程进行了配置。

如果我们需要模仿scala Future的功效可以用unsafeStart:

1 val fs = fapply.unsafeStart              //> run... 
2                                          //| fs  : scalaz.concurrent.Future[Long] = Suspend(<function0>) 
3 fs.run                                   //> res6: Long = 1465958922401 
4 Thread.sleep(1000) 
5 fs.run                                   //> res7: Long = 1465958922401

我们也可以用scala Future的callback方式用async函数把自定义的callback挂在构建的Future上:

1 def fu(t: Long): Future[String] = 
2   Future.async[String]{k => k(s"the curreent time is: ${t.toString}!!!")} 
3                                                   //> fu: (t: Long)scalaz.concurrent.Future[String] 
4 fu(System.currentTimeMillis()).run                //> res8: String = the curreent time is: 1465958923415!!!

scala Future和scalaz Future之间可以相互转换:

 1 import scala.concurrent.{Future => sFuture} 
 2 import scala.concurrent.ExecutionContext 
 3 import scala.util.{Success,Failure} 
 4 def futureTozFuture[A](sf: sFuture[A])(implicit ec: ExecutionContext): Future[A] = 
 5   Future.async {cb => sf.onComplete { 
 6     case Success(a) => cb(a) 
 7 //    case Failure(e) => cb(e) 
 8   }}                            //> futureTozFuture: [A](sf: scala.concurrent.Future[A])(implicit ec: scala.con 
 9                                 //| current.ExecutionContext)scalaz.concurrent.Future[A] 
10 def zFutureTosFuture[A](zf: Future[A]): sFuture[A] = { 
11   val prom = scala.concurrent.Promise[A] 
12   zf.unsafePerformAsync { 
13      case a => prom.success(a)是 
14   } 
15   prom.future 
16 }

突然发现scalaz Future是没有异常处理(exception)功能的。scalaz提供了concurrent.Task类型填补了Future的这部分缺陷。我们会在下篇讨论Task。
我们用上面scala Future的例子来示范scalaz Future的函数组合能力:

 1   def dbl(i: Int): Future[Int] = Future { i + i } //> dbl: (i: Int)scalaz.concurrent.Future[Int] 
 2   def sqr(i: Int): Future[Int] = Future { i * i } //> sqr: (i: Int)scalaz.concurrent.Future[Int] 
 3   def sum(a: Int, b: Int): Future[Int] = Future { a + b } 
 4                                   //> sum: (a: Int, b: Int)scalaz.concurrent.Future[Int] 
 5   val fsum = for { 
 6     a <- dbl(3) 
 7     b <- sqr(a) 
 8     c <- sum(a,b) 
 9   } yield c                       //> fsum  : scalaz.concurrent.Future[Int] = BindAsync(<function1>,<function1>) 
10  
11   fsum.unsafePerformAsync { 
12     case a => println(s"result c is:$a") 
13   } 
14   Thread.sleep(1000)              //> result c is:42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/industrynews/12904.html

(0)
上一篇 2021年7月19日 15:01
下一篇 2021年7月19日 15:01

相关推荐

发表回复

登录后才能评论