Scalaz(24)- 泛函数据结构: Tree-数据游览及维护详解编程语言

  上节我们讨论了Zipper-串形不可变集合(immutable sequential collection)游标,在串形集合中左右游走及元素维护操作。这篇我们谈谈Tree。在电子商务应用中对于xml,json等格式文件的处理要求非常之普遍,scalaz提供了Tree数据类型及相关的游览及操作函数能更方便高效的处理xml,json文件及系统目录这些树形结构数据的相关编程。scalaz Tree的定义非常简单:scalaz/Tree.scala

* A multi-way tree, also known as a rose tree. Also known as Cofree[Stream, A]. 
 */ 
sealed abstract class Tree[A] { 
 
  import Tree._ 
 
  /** The label at the root of this tree. */ 
  def rootLabel: A 
 
  /** The child nodes of this tree. */ 
  def subForest: Stream[Tree[A]] 
...

Tree是由一个A值rootLabel及一个流中子树Stream[Tree[A]]组成。Tree可以只由一个A类型值rootLabel组成,这时流中子树subForest就是空的Stream.empty。只有rootLabel的Tree俗称叶(leaf),有subForest的称为节(node)。scalaz为任何类型提供了leaf和node的构建注入方法:syntax/TreeOps.scala

final class TreeOps[A](self: A) { 
  def node(subForest: Tree[A]*): Tree[A] = Tree.node(self, subForest.toStream) 
 
  def leaf: Tree[A] = Tree.leaf(self) 
} 
 
trait ToTreeOps { 
  implicit def ToTreeOps[A](a: A) = new TreeOps(a) 
}

实际上注入方法调用了Tree里的构建函数:

trait TreeFunctions { 
  /** Construct a new Tree node. */ 
  def node[A](root: => A, forest: => Stream[Tree[A]]): Tree[A] = new Tree[A] { 
    lazy val rootLabel = root 
    lazy val subForest = forest 
 
    override def toString = "<tree>" 
  } 
 
  /** Construct a tree node with no children. */ 
  def leaf[A](root: => A): Tree[A] = node(root, Stream.empty)

Tree提供了构建和模式拆分函数:

object Tree extends TreeInstances with TreeFunctions { 
  /** Construct a tree node with no children. */ 
  def apply[A](root: => A): Tree[A] = leaf(root) 
 
  object Node { 
    def unapply[A](t: Tree[A]): Option[(A, Stream[Tree[A]])] = Some((t.rootLabel, t.subForest)) 
  } 
}

我们可以直接构建Tree:

 1  Tree("ALeaf") === "ALeaf".leaf                  //> res5: Boolean = true 
 2   val tree: Tree[Int] = 
 3     1.node( 
 4       11.leaf, 
 5       12.node( 
 6         121.leaf), 
 7      2.node( 
 8       21.leaf, 
 9       22.leaf) 
10      )                                            //> tree  : scalaz.Tree[Int] = <tree> 
11   tree.drawTree                                   //> res6: String = "1 
12                                                   //| | 
13                                                   //| +- 11 
14                                                   //| | 
15                                                   //| +- 12 
16                                                   //| |  | 
17                                                   //| |  `- 121 
18                                                   //| | 
19                                                   //| `- 2 
20                                                   //|    | 
21                                                   //|    +- 21 
22                                                   //|    | 
23                                                   //|    `- 22 
24                                                   //| "

Tree实现了下面众多的接口函数:

sealed abstract class TreeInstances { 
  implicit val treeInstance: Traverse1[Tree] with Monad[Tree] with Comonad[Tree] with Align[Tree] with Zip[Tree] = new Traverse1[Tree] with Monad[Tree] with Comonad[Tree] with Align[Tree] with Zip[Tree] { 
    def point[A](a: => A): Tree[A] = Tree.leaf(a) 
    def cobind[A, B](fa: Tree[A])(f: Tree[A] => B): Tree[B] = fa cobind f 
    def copoint[A](p: Tree[A]): A = p.rootLabel 
    override def map[A, B](fa: Tree[A])(f: A => B) = fa map f 
    def bind[A, B](fa: Tree[A])(f: A => Tree[B]): Tree[B] = fa flatMap f 
    def traverse1Impl[G[_]: Apply, A, B](fa: Tree[A])(f: A => G[B]): G[Tree[B]] = fa traverse1 f 
    override def foldRight[A, B](fa: Tree[A], z: => B)(f: (A, => B) => B): B = fa.foldRight(z)(f) 
    override def foldMapRight1[A, B](fa: Tree[A])(z: A => B)(f: (A, => B) => B) = (fa.flatten.reverse: @unchecked) match { 
      case h #:: t => t.foldLeft(z(h))((b, a) => f(a, b)) 
    } 
    override def foldLeft[A, B](fa: Tree[A], z: B)(f: (B, A) => B): B = 
      fa.flatten.foldLeft(z)(f) 
    override def foldMapLeft1[A, B](fa: Tree[A])(z: A => B)(f: (B, A) => B): B = fa.flatten match { 
      case h #:: t => t.foldLeft(z(h))(f) 
    } 
    override def foldMap[A, B](fa: Tree[A])(f: A => B)(implicit F: Monoid[B]): B = fa foldMap f 
    def alignWith[A, B, C](f: (/&/[A, B]) ⇒ C) = {  
      def align(ta: Tree[A], tb: Tree[B]): Tree[C] = 
        Tree.node(f(/&/(ta.rootLabel, tb.rootLabel)), Align[Stream].alignWith[Tree[A], Tree[B], Tree[C]]({ 
          case /&/.This(sta) ⇒ sta map {a ⇒ f(/&/.This(a))} 
          case /&/.That(stb) ⇒ stb map {b ⇒ f(/&/.That(b))} 
          case /&/.Both(sta, stb) ⇒ align(sta, stb) 
        })(ta.subForest, tb.subForest)) 
      align _ 
    } 
    def zip[A, B](aa: => Tree[A], bb: => Tree[B]) = { 
      val a = aa 
      val b = bb 
      Tree.node( 
        (a.rootLabel, b.rootLabel), 
        Zip[Stream].zipWith(a.subForest, b.subForest)(zip(_, _)) 
      ) 
    } 
  } 
 
  implicit def treeEqual[A](implicit A0: Equal[A]): Equal[Tree[A]] = 
    new TreeEqual[A] { def A = A0 } 
 
  implicit def treeOrder[A](implicit A0: Order[A]): Order[Tree[A]] = 
    new Order[Tree[A]] with TreeEqual[A] { 
      def A = A0 
      import std.stream._ 
      override def order(x: Tree[A], y: Tree[A]) = 
        A.order(x.rootLabel, y.rootLabel) match { 
          case Ordering.EQ => 
            Order[Stream[Tree[A]]].order(x.subForest, y.subForest) 
          case x => x 
        } 
    }

那么Tree就是个Monad,也是Functor,Applicative,还是traversable,foldable。Tree也实现了Order,Equal实例,可以进行值的顺序比较。我们就用些例子来说明吧: 

 1 // 是 Functor... 
 2     (tree map { v: Int => v + 1 }) === 
 3     2.node( 
 4       12.leaf, 
 5       13.node( 
 6         122.leaf), 
 7      3.node( 
 8       22.leaf, 
 9       23.leaf) 
10      )                                            //> res7: Boolean = true 
11  
12  // ...是 Monad 
13     1.point[Tree] === 1.leaf                      //> res8: Boolean = true 
14     val t2 = tree >>= (x => (x == 2) ? x.leaf | x.node((-x).leaf)) 
15                                                   //> t2  : scalaz.Tree[Int] = <tree> 
16     t2 === 1.node((-1).leaf, 2.leaf, 3.node((-3).leaf, 4.node((-4).leaf))) 
17                                                   //> res9: Boolean = false 
18     t2.drawTree                                   //> res10: String = "1 
19                                                   //| | 
20                                                   //| +- -1 
21                                                   //| | 
22                                                   //| +- 11 
23                                                   //| |  | 
24                                                   //| |  `- -11 
25                                                   //| | 
26                                                   //| +- 12 
27                                                   //| |  | 
28                                                   //| |  +- -12 
29                                                   //| |  | 
30                                                   //| |  `- 121 
31                                                   //| |     | 
32                                                   //| |     `- -121 
33                                                   //| | 
34                                                   //| `- 2 
35                                                   //|    | 
36                                                   //|    +- 21 
37                                                   //|    |  | 
38                                                   //|    |  `- -21 
39                                                   //|    | 
40                                                   //|    `- 22 
41                                                   //|       | 
42                                                   //|       `- -22 
43                                                   //| " 
44  // ...是 Foldable 
45     tree.foldMap(_.toString) === "1111212122122"  //> res11: Boolean = true

说到构建Tree,偶然在网上发现了这么一个Tree构建函数:

  def pathTree[E](root: E, paths: Seq[Seq[E]]): Tree[E] = { 
    root.node(paths groupBy (_.head) map { 
      case (parent, subpaths) => 
        pathTree(parent, subpaths collect { 
          case pp +: rest if rest.nonEmpty => rest 
        }) 
    } toSeq: _*) 
  }

据说这个pathTree函数能把List里的目录结构转化成Tree。先看看到底是不是具备如此功能:

 1   val paths = List(List("A","a1","a2"),List("B","b1")) 
 2                                                   //> paths  : List[List[String]] = List(List(A, a1, a2), List(B, b1)) 
 3   pathTree("root",paths) drawTree                 //> res0: String = ""root" 
 4                                                   //| | 
 5                                                   //| +- "A" 
 6                                                   //| |  | 
 7                                                   //| |  `- "a1" 
 8                                                   //| |     | 
 9                                                   //| |     `- "a2" 
10                                                   //| | 
11                                                   //| `- "B" 
12                                                   //|    | 
13                                                   //|    `- "b1" 
14                                                   //| " 
15  val paths = List(List("A","a1","a2"),List("B","b1"),List("B","b2","b3")) 
16              //> paths  : List[List[String]] = List(List(A, a1, a2), List(B, b1), List(B, b2, 
17                                                   //|  b3)) 
18   pathTree("root",paths) drawTree                 //> res0: String = ""root" 
19                                                   //| | 
20                                                   //| +- "A" 
21                                                   //| |  | 
22                                                   //| |  `- "a1" 
23                                                   //| |     | 
24                                                   //| |     `- "a2" 
25                                                   //| | 
26                                                   //| `- "B" 
27                                                   //|    | 
28                                                   //|    +- "b2" 
29                                                   //|    |  | 
30                                                   //|    |  `- "b3" 
31                                                   //|    | 
32                                                   //|    `- "b1" 
33                                                   //| "

果然能行,而且还能把”B”节点合并汇集。这个函数的作者简直就是个神人,起码是个算法和FP语法运用大师。我虽然还无法达到大师的程度能写出这样的泛函程序,但好奇心是挡不住的,总想了解这个函数是怎么运作的。可以用一些测试数据来逐步跟踪一下: 

 

1   val paths = List(List("A"))           //> paths  : List[List[String]] = List(List(A)) 
2   val gpPaths =paths.groupBy(_.head)    //> gpPaths  : scala.collection.immutable.Map[String,List[List[String]]] = Map(A-> List(List(A))) 
3   List(List("A")) collect { case pp +: rest if rest.nonEmpty => rest } 
4                                                   //> res0: List[List[String]] = List()

 

通过上面的跟踪约化我们看到List(List(A))在pathTree里的执行过程。这里把复杂的groupBy和collect函数的用法和结果了解了。实际上整个过程相当于:

 

1  "root".node( 
2        "A".node(List().toSeq: _*) 
3        ) drawTree                                 //> res3: String = ""root" 
4                                                   //| | 
5                                                   //| `- "A" 
6                                                   //| "

 

如果再增加一个点就相当于:

1  "root".node( 
2      "A".node(List().toSeq: _*), 
3      "B".node(List().toSeq: _*) 
4      ) drawTree                                   //> res4: String = ""root" 
5                                                   //| | 
6                                                   //| +- "A" 
7                                                   //| | 
8                                                   //| `- "B" 
9                                                   //| "

加多一层: 

 1   val paths = List(List("A","a1"))                //> paths  : List[List[String]] = List(List(A, a1)) 
 2   val gpPaths =paths.groupBy(_.head)              //> gpPaths  : scala.collection.immutable.Map[String,List[List[String]]] = Map(A 
 3                                                   //|  -> List(List(A, a1))) 
 4   List(List("A","a1")) collect { case pp +: rest if rest.nonEmpty => rest } 
 5                                                   //> res0: List[List[String]] = List(List(a1)) 
 6  
 7 //化解成 
 8  "root".node( 
 9        "A".node( 
10           "a1".node( 
11            List().toSeq: _*) 
12            ) 
13        ) drawTree                                 //> res3: String = ""root" 
14                                                   //| | 
15                                                   //| `- "A" 
16                                                   //|    | 
17                                                   //|    `- "a1" 
18                                                   //| "

 合并目录:

 

 1   val paths = List(List("A","a1"),List("A","a2")) //> paths  : List[List[String]] = List(List(A, a1), List(A, a2)) 
 2   val gpPaths =paths.groupBy(_.head)              //> gpPaths  : scala.collection.immutable.Map[String,List[List[String]]] = Map(A 
 3                                                   //|  -> List(List(A, a1), List(A, a2))) 
 4   List(List("A","a1"),List("A","a2")) collect { case pp +: rest if rest.nonEmpty => rest } 
 5                                                   //> res0: List[List[String]] = List(List(a1), List(a2)) 
 6  
 7 //相当产生结果 
 8 "root".node( 
 9        "A".node( 
10           "a1".node( 
11            List().toSeq: _*) 
12            , 
13           "a2".node( 
14            List().toSeq: _*) 
15            ) 
16        ) drawTree                                 //> res3: String = ""root" 
17                                                   //| | 
18                                                   //| `- "A" 
19                                                   //|    | 
20                                                   //|    +- "a1" 
21                                                   //|    | 
22                                                   //|    `- "a2" 
23                                                   //| "

 

相信这些跟踪过程足够了解整个函数的工作原理了。
有了Tree构建方法后就需要Tree的游动和操作函数了。与串形集合的直线游动不同的是,树形集合游动方式是分岔的。所以Zipper不太适用于树形结构。scalaz特别提供了树形集合的定位游标TreeLoc,我们看看它的定义:scalaz/TreeLoc.scala

 

final case class TreeLoc[A](tree: Tree[A], lefts: TreeForest[A], 
                            rights: TreeForest[A], parents: Parents[A]) { 
... 
trait TreeLocFunctions { 
  type TreeForest[A] = 
  Stream[Tree[A]] 
 
  type Parent[A] = 
  (TreeForest[A], A, TreeForest[A]) 
 
  type Parents[A] = 
  Stream[Parent[A]]

 

树形集合游标TreeLoc由当前节点tree、左子树lefts、右子树rights及父树parents组成。lefts,rights,parents都是在流中的树形Stream[Tree[A]]。
用Tree.loc可以直接对目标树生成TreeLoc:

 

 1 /** A TreeLoc zipper of this tree, focused on the root node. */ 
 2   def loc: TreeLoc[A] = TreeLoc.loc(this, Stream.Empty, Stream.Empty, Stream.Empty) 
 3   
 4  val tree: Tree[Int] = 
 5     1.node( 
 6       11.leaf, 
 7       12.node( 
 8         121.leaf), 
 9      2.node( 
10       21.leaf, 
11       22.leaf) 
12      )                           //> tree  : scalaz.Tree[Int] = <tree> 
13  
14   tree.loc                      //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream())

 

TreeLoc的游动函数:

 

  def root: TreeLoc[A] = 
    parent match { 
      case Some(z) => z.root 
      case None    => this 
    } 
 
  /** Select the left sibling of the current node. */ 
  def left: Option[TreeLoc[A]] = lefts match { 
    case t #:: ts     => Some(loc(t, ts, tree #:: rights, parents)) 
    case Stream.Empty => None 
  } 
 
  /** Select the right sibling of the current node. */ 
  def right: Option[TreeLoc[A]] = rights match { 
    case t #:: ts     => Some(loc(t, tree #:: lefts, ts, parents)) 
    case Stream.Empty => None 
  } 
 
  /** Select the leftmost child of the current node. */ 
  def firstChild: Option[TreeLoc[A]] = tree.subForest match { 
    case t #:: ts     => Some(loc(t, Stream.Empty, ts, downParents)) 
    case Stream.Empty => None 
  } 
 
  /** Select the rightmost child of the current node. */ 
  def lastChild: Option[TreeLoc[A]] = tree.subForest.reverse match { 
    case t #:: ts     => Some(loc(t, ts, Stream.Empty, downParents)) 
    case Stream.Empty => None 
  } 
 
  /** Select the nth child of the current node. */ 
  def getChild(n: Int): Option[TreeLoc[A]] = 
    for {lr <- splitChildren(Stream.Empty, tree.subForest, n) 
         ls = lr._1 
    } yield loc(ls.head, ls.tail, lr._2, downParents)

 

我们试着用这些函数游动:

 

 1  val tree: Tree[Int] = 
 2     1.node( 
 3       11.leaf, 
 4       12.node( 
 5         121.leaf), 
 6      2.node( 
 7       21.leaf, 
 8       22.leaf) 
 9      )                                            //> tree  : scalaz.Tree[Int] = <tree> 
10   tree.loc                                        //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream()) 
11   val l = for { 
12    l1 <- tree.loc.some 
13    l2 <- l1.firstChild 
14    l3 <- l1.lastChild 
15    l4 <- l3.firstChild 
16    } yield (l1,l2,l3,l4)                          //> l  : Option[(scalaz.TreeLoc[Int], scalaz.TreeLoc[Int], scalaz.TreeLoc[Int], 
17                                                   //|  scalaz.TreeLoc[Int])] = Some((TreeLoc(<tree>,Stream(),Stream(),Stream()),T 
18                                                   //| reeLoc(<tree>,Stream(),Stream(<tree>, <tree>),Stream((Stream(),1,Stream()), 
19                                                   //|  ?)),TreeLoc(<tree>,Stream(<tree>, <tree>),Stream(),Stream((Stream(),1,Stre 
20                                                   //| am()), ?)),TreeLoc(<tree>,Stream(),Stream(<tree>, ?),Stream((Stream(<tree>, 
21                                                   //|  <tree>),2,Stream()), ?)))) 
22    
23   l.get._1.getLabel                               //> res8: Int = 1 
24   l.get._2.getLabel                               //> res9: Int = 11 
25   l.get._3.getLabel                               //> res10: Int = 2 
26   l.get._4.getLabel                               //> res11: Int = 21

 

跳动函数:

  /** Select the nth child of the current node. */ 
  def getChild(n: Int): Option[TreeLoc[A]] = 
    for {lr <- splitChildren(Stream.Empty, tree.subForest, n) 
         ls = lr._1 
    } yield loc(ls.head, ls.tail, lr._2, downParents) 
 
  /** Select the first immediate child of the current node that satisfies the given predicate. */ 
  def findChild(p: Tree[A] => Boolean): Option[TreeLoc[A]] = { 
    @tailrec 
    def split(acc: TreeForest[A], xs: TreeForest[A]): Option[(TreeForest[A], Tree[A], TreeForest[A])] = 
      (acc, xs) match { 
        case (acc, Stream.cons(x, xs)) => if (p(x)) Some((acc, x, xs)) else split(Stream.cons(x, acc), xs) 
        case _                         => None 
      } 
    for (ltr <- split(Stream.Empty, tree.subForest)) yield loc(ltr._2, ltr._1, ltr._3, downParents) 
  } 
 
  /**Select the first descendant node of the current node that satisfies the given predicate. */ 
  def find(p: TreeLoc[A] => Boolean): Option[TreeLoc[A]] = 
    Cobind[TreeLoc].cojoin(this).tree.flatten.find(p)

find用法示范:

 

 1   val tree: Tree[Int] = 
 2     1.node( 
 3       11.leaf, 
 4       12.node( 
 5         121.leaf), 
 6      2.node( 
 7       21.leaf, 
 8       22.leaf) 
 9      )                                            //> tree  : scalaz.Tree[Int] = <tree> 
10   tree.loc                                        //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream()) 
11   val l = for { 
12    l1 <- tree.loc.some 
13    l2 <- l1.find{_.getLabel == 2} 
14    l3 <- l1.find{_.getLabel == 121} 
15    l4 <- l2.find{_.getLabel == 22} 
16    l5 <- l1.findChild{_.rootLabel == 12} 
17    l6 <- l1.findChild{_.rootLabel == 2} 
18   } yield l6                                      //> l  : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),St 
19                                                   //| ream(),Stream((Stream(),1,Stream()), ?)))

 

注意:上面6个跳动都成功了。如果无法跳转结果会是None
insert,modify,delete这些操作函数:

  /** Replace the current node with the given one. */ 
  def setTree(t: Tree[A]): TreeLoc[A] = loc(t, lefts, rights, parents) 
 
  /** Modify the current node with the given function. */ 
  def modifyTree(f: Tree[A] => Tree[A]): TreeLoc[A] = setTree(f(tree)) 
 
  /** Modify the label at the current node with the given function. */ 
  def modifyLabel(f: A => A): TreeLoc[A] = setLabel(f(getLabel)) 
 
  /** Get the label of the current node. */ 
  def getLabel: A = tree.rootLabel 
 
  /** Set the label of the current node. */ 
  def setLabel(a: A): TreeLoc[A] = modifyTree((t: Tree[A]) => node(a, t.subForest)) 
 
  /** Insert the given node to the left of the current node and give it focus. */ 
  def insertLeft(t: Tree[A]): TreeLoc[A] = loc(t, lefts, Stream.cons(tree, rights), parents) 
 
  /** Insert the given node to the right of the current node and give it focus. */ 
  def insertRight(t: Tree[A]): TreeLoc[A] = loc(t, Stream.cons(tree, lefts), rights, parents) 
 
  /** Insert the given node as the first child of the current node and give it focus. */ 
  def insertDownFirst(t: Tree[A]): TreeLoc[A] = loc(t, Stream.Empty, tree.subForest, downParents) 
 
  /** Insert the given node as the last child of the current node and give it focus. */ 
  def insertDownLast(t: Tree[A]): TreeLoc[A] = loc(t, tree.subForest.reverse, Stream.Empty, downParents) 
 
  /** Insert the given node as the nth child of the current node and give it focus. */ 
  def insertDownAt(n: Int, t: Tree[A]): Option[TreeLoc[A]] = 
    for (lr <- splitChildren(Stream.Empty, tree.subForest, n)) yield loc(t, lr._1, lr._2, downParents) 
 
  /** Delete the current node and all its children. */ 
  def delete: Option[TreeLoc[A]] = rights match { 
    case Stream.cons(t, ts) => Some(loc(t, lefts, ts, parents)) 
    case _                  => lefts match { 
      case Stream.cons(t, ts) => Some(loc(t, ts, rights, parents)) 
      case _                  => for (loc1 <- parent) yield loc1.modifyTree((t: Tree[A]) => node(t.rootLabel, Stream.Empty)) 
    } 
  }

用法示范:

 1   val tr = 1.leaf                                 //> tr  : scalaz.Tree[Int] = <tree> 
 2   val tl = for { 
 3     l1 <- tr.loc.some 
 4     l3 <- l1.insertDownLast(12.leaf).some 
 5     l4 <- l3.insertDownLast(121.leaf).some 
 6     l5 <- l4.root.some 
 7     l2 <- l5.insertDownFirst(11.leaf).some 
 8     l6 <- l2.root.some 
 9     l7 <- l6.find{_.getLabel == 12} 
10     l8 <- l7.setLabel(102).some 
11   } yield l8                                      //> tl  : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),S 
12                                                   //| tream(),Stream((Stream(),1,Stream()), ?))) 
13    
14   tl.get.toTree.drawTree                          //> res8: String = "1 
15                                                   //| | 
16                                                   //| +- 11 
17                                                   //| | 
18                                                   //| `- 102 
19                                                   //|    | 
20                                                   //|    `- 121 
21                                                   //| " 
22   

setTree和delete会替换当前节点下的所有子树:

 1   val tree: Tree[Int] = 
 2     1.node( 
 3       11.leaf, 
 4       12.node( 
 5         121.leaf), 
 6      2.node( 
 7       21.leaf, 
 8       22.leaf) 
 9      )                                            //> tree  : scalaz.Tree[Int] = <tree> 
10    def modTree(t: Tree[Int]): Tree[Int] = { 
11       val l = for { 
12         l1 <- t.loc.some 
13         l2 <- l1.find{_.getLabel == 22} 
14         l3 <- l2.setTree { 3.node (31.leaf) }.some 
15       } yield l3 
16       l.get.toTree 
17    }                                              //> modTree: (t: scalaz.Tree[Int])scalaz.Tree[Int] 
18    val l = for { 
19    l1 <- tree.loc.some 
20    l2 <- l1.find{_.getLabel == 2} 
21    l3 <- l2.modifyTree{modTree(_)}.some 
22    l4 <- l3.root.some 
23    l5 <- l4.find{_.getLabel == 12} 
24    l6 <- l5.delete 
25   } yield l6                                      //> l  : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),St 
26                                                   //| ream(),Stream((Stream(),1,Stream()), ?))) 
27   l.get.toTree.drawTree                           //> res7: String = "1 
28                                                   //| | 
29                                                   //| +- 11 
30                                                   //| | 
31                                                   //| `- 2 
32                                                   //|    | 
33                                                   //|    +- 21 
34                                                   //|    | 
35                                                   //|    `- 3 
36                                                   //|       | 
37                                                   //|       `- 31 
38                                                   //| "

通过scalaz的Tree和TreeLoc数据结构,以及一整套树形结构游览、操作函数,我们可以方便有效地实现FP风格的不可变树形集合编程。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/industrynews/12924.html

(0)
上一篇 2021年7月19日 15:01
下一篇 2021年7月19日 15:01

相关推荐

发表回复

登录后才能评论