区块链
-
pandas(七)数据规整化:清理、转换、合并、重塑之合并数据集详解大数据
pandas对象中的数据可以通过一些内置的方式进行合并: pandas.merge 可根据一个或多个键将不同的DataFrame中的行连接起来。 pandas.conc…
-
pandas(八)重塑和轴向旋转详解大数据
重塑层次化索引 层次化索引为DataFrame的重排提供了良好的一致性操作,主要方法有 stack :将数据的列旋转为行 unstack:将数据的行转换为列 用一个d…
-
pandas(九)数据转换详解大数据
移除重复数据 dataframe中常常会出现重复行,DataFrame对象的duplicated方法返回一个布尔型的Series对象,可以表示各行是否是重复行。还有一个drop_d…
-
Tensorflow 学习笔记(一)TensorFlow入门详解大数据
一、计算模型—-计算图 1.1 计算图的概念:TensorFlow就是通过图的形式绘制出张量节点的计算过程,例如下图执行了一个a+b的操作。 1.2 计算图…
-
TensorFlow学习笔记(二)深层神经网络详解大数据
一、深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法。 深层神经网络有两个非常重要的特性:深层和非线性。 1.1线性模型的局限性 线性模型:y …
-
TensorFlow学习笔记(三)MNIST数字识别问题详解大数据
一、MNSIT数据处理 MNSIT是一个非常有名的手写体数字识别数据集。包含60000张训练图片,10000张测试图片。每张图片是28X28的数字。 TonserFlow提供了一个…
-
TensorFlow学习笔记(四)图像识别与卷积神经网络详解大数据
一、卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围…
-
TensorFlow学习笔记(五)图像数据处理详解大数据
目录: 一、TFRecord输入数据格式 1.1 TFrecord格式介绍 1.2 TFRecord样例程序 二、图像数据处理 2.1TensorFlow图像处…
-
机器学习算法之降维详解大数据
在机器学习的过程中,我们经常会遇见过拟合的问题。而输入数据或features的维度过高就是导致过拟合的问题之一。。维度越高,你的数据在每个特征维度上的分布就越稀疏,这对机器学习…
-
TensorFlow学习笔记(六)循环神经网络详解大数据
一、循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据。循环神经网络刻画了一个序列当前的输出与之前信息的关系。从网络结构上,…