网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的,大多又是 0.20 等旧版本版本的做法,即 javac -classpath /usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jar WordCount.java
,但较新的 2.X 版本中,已经没有 hadoop-core*.jar 这个文件,因此编辑和打包自己的 MapReduce 程序与旧版本有所不同。
本文以 Hadoop 2.6.0 环境下的 WordCount 实例来介绍 2.x 版本中如何编辑自己的 MapReduce 程序。
Hadoop 2.x 版本中的依赖 jar
Hadoop 2.x 版本中 jar 不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如使用 Hadoop 2.6.0 运行 WordCount 实例至少需要如下三个 jar:
- $HADOOP_HOME/share/hadoop/common/hadoop-common-2.6.0.jar
- $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar
- $HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar
实际上,通过命令 hadoop classpath
我们可以得到运行 Hadoop 程序所需的全部 classpath 信息。
编译、打包 Hadoop MapReduce 程序
我们将 Hadoop 的 classhpath 信息添加到 CLASSPATH 变量中,在 ~/.bashrc 中增加如下几行:
export HADOOP_HOME=/usr/local/hadoop
export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH
别忘了执行 source ~/.bashrc
使变量生效,接着就可以通过 javac
命令编译 WordCount.java 了(使用的是 Hadoop 源码中的 WordCount.java,源码在文本最后面):
- javac WordCount.java
编译时会有警告,可以忽略。编译后可以看到生成了几个 .class 文件。
接着把 .class 文件打包成 jar,才能在 Hadoop 中运行:
- jar -cvf WordCount.jar ./WordCount*.class
打包完成后,运行试试,创建几个输入文件:
- mkdir input
- echo “echo of the rainbow” > ./input/file0
- echo “the waiting game” > ./input/file1
开始运行:
- /usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output
不过这边可能会遇到如下的提示 Exception in thread "main" java.lang.NoClassDefFoundError: WordCount
:
因为程序中声明了 package ,所以在命令中也要 org.apache.hadoop.examples
写完整:
- /usr/local/hadoop/bin/hadoop jar WordCount.jar org.apache.hadoop.examples.WordCount input output
正确运行后的结果如下:
进阶:使用 Eclipse 编译运行 MapReduce 程序
使用命令行编译运行MapReduce程序毕竟有些麻烦,修改一次就得手动编译、打包一次,使用Eclipse编译运行MapReduce程序会更加方便。
WordCount.java 源码
文件位于 hadoop-2.6.0-src/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples 中:
- /**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * “License”); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an “AS IS” BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.hadoop.examples;
- import java.io.IOException;
- import java.util.StringTokenizer;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.util.GenericOptionsParser;
- public class WordCount {
- public static class TokenizerMapper
- extends Mapper<Object, Text, Text, IntWritable>{
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
- public void map(Object key, Text value, Context context
- ) throws IOException, InterruptedException {
- StringTokenizer itr = new StringTokenizer(value.toString());
- while (itr.hasMoreTokens()) {
- word.set(itr.nextToken());
- context.write(word, one);
- }
- }
- }
- public static class IntSumReducer
- extends Reducer<Text,IntWritable,Text,IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key, Iterable<IntWritable> values,
- Context context
- ) throws IOException, InterruptedException {
- int sum = 0;
- for (IntWritable val : values) {
- sum += val.get();
- }
- result.set(sum);
- context.write(key, result);
- }
- }
- public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
- if (otherArgs.length != 2) {
- System.err.println(“Usage: wordcount <in> <out>”);
- System.exit(2);
- }
- Job job = new Job(conf, “word count”);
- job.setJarByClass(WordCount.class);
- job.setMapperClass(TokenizerMapper.class);
- job.setCombinerClass(IntSumReducer.class);
- job.setReducerClass(IntSumReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
参考资料
- http://blog.sina.com.cn/s/blog_68cceb610101r6tg.html
- http://www.cppblog.com/humanchao/archive/2014/05/27/207118.aspx
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/aiops/57292.html