所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。
下面来介绍几种简单而且经典的排序算法,这是测试用的主函数,各个排序算法在vs2013下全部测试通过
int main()
{
int a[10] = { 6, 4, 5, 7, 1, 2, 9, 3, 8, 10 };
int n = 10;
int i;
quick_sort(a, 0, 9); //替换这里即可
for(i = 0; i < 10; i++){
printf("%d ", a[i]);
}
return 0;
}
冒泡排序:
冒泡排序是非常容易理解和实现,,以从小到大排序举例:
设数组长度为N。
1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。
2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
3.N=N-1,如果N不为0就重复前面二步,否则排序完成。
下面是实现代码:
void bubblesort(int a[], int n){
int j, k;
int flag,temp;
flag = n;
while (flag > 0){
k = flag;
flag = 0;
for (j = 1; j < k; j++)
if(a[j-1]>a[j]){
temp = a[j - 1];
a[j - 1] = a[j];
a[j] = temp;
flag = j;
}
}
}
直接插入排序:
直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。
直接插入排序示意图:
设数组为a[0…n-1]。
1. 初始时,a[0]自成1个有序区,无序区为a[1..n-1]。令i=1
2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3. i++并重复第二步直到i==n-1。排序完成。
下面是具体实现代码
void insertsort(int a[], int n){
int i, j;
int temp;
for (i = 1; i < n; i++){
if (a[i] < a[i - 1]){
temp = a[i];
for (j = i - 1; j = n - 1 && a[j]>temp; j--)
a[j + 1] = a[j];
a[j + 1] = temp;
}
}
}
希尔排序:
希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。
以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例
第一次 gap = 10 / 2 = 5
49 38 65 97 26 13 27 49 55 4
1A 1B
2A 2B
3A 3B
4A 4B
5A 5B
1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4)这样每组排序后就变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26),下同。
第二次 gap = 5 / 2 = 2
排序后
13 27 49 55 4 49 38 65 97 26
1A 1B 1C 1D 1E
2A 2B 2C 2D 2E
第三次 gap = 2 / 2 = 1
4 26 13 27 38 49 49 55 97 65
1A 1B 1C 1D 1E 1F 1G 1H 1I 1J
第四次 gap = 1 / 2 = 0 排序完成得到数组:
4 13 26 27 38 49 49 55 65 97
下面是具体实现代码:
void shellsort(int a[],int n){
int j,k, gap;
for (gap = n / 2; gap > 0; gap /= 2)
for (j = gap; j < n;j++)
if (a[j] < a[j-gap]){ //每个元素与自己的组进行直接插入排序
k = j - gap;
int temp = a[j];
while (k>0){
a[k+gap] = a[k];
k -= gap;
}
a[k + gap] = temp;
}
}
归并排序:
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
其基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
归并排序示意图
下面是实现代码:
//将有二个有序数列a[first...mid]和a[mid...last]合并。 void mergearray(int a[], int first, int mid, int last, int temp[]) { int i = first, j = mid + 1; int m = mid, n = last; int k = 0; while (i <= m && j <= n) { if (a[i] <= a[j]) temp[k++] = a[i++]; else temp[k++] = a[j++]; } while (i <= m) temp[k++] = a[i++]; while (j <= n) temp[k++] = a[j++]; for (i = 0; i < k; i++) a[first + i] = temp[i]; } void mergesort(int a[], int first, int last, int temp[]) { if (first < last) { int mid = (first + last) / 2; mergesort(a, first, mid, temp); //左边有序 mergesort(a, mid + 1, last, temp); //右边有序 mergearray(a, first, mid, last, temp); //再将二个有序数列合并 } } bool MergeSort(int a[], int n) { int *p = new int[n]; if (p == NULL) return false; mergesort(a, 0, n - 1, p); delete[] p; return true; }
选择排序:
选择排序的核心思想是:
第 i 趟排序是从后面的 n – i + 1(i = 1,2,3,4,. . .,n – 1)个元素中选择一个值最小的元素与该 n – i + 1 个元素的最前门的那个元素交换位置,即与整个序列的第 i 个元素交换位置。如此下去,直到 i = n – 1,排序结束。
也可描述为:
每一趟排序从序列中未排好序的那些元素中选择一个值最小的元素,然后将其与这些未排好序的元素的第一个元素交换位置。
特点:
1. 算法完成需要 n – 1 趟排序,按照算法的描述,n – 1 趟排序之后数组中的前 n – 1 个元素已经处于相应的位置,第 n 个元素也处于相应的位置上。
2. 第 i 趟排序,实际上就是需要将数组中第 i 个元素放置到数组的合适位置,这里需要一个临时变量 j 来遍历序列中未排好序的那些元素,另一临时变量 d 来记录未排好序的那些元素中值最小的元素的下标值,
3. 一趟遍历开始时,令 d = i,假定未排序序列的第一个元素就是最小的元素,遍历完成后,变量 d 所对应的值就是值最小的元素,判断 d 是否是未排序序列的第一个元素,如果是,则不需要交换元素,如果不是,则需要交换array[d] 和 array[i]。
4. 此方法是不稳定排序算法,可对数组{a1 = 49,a2 = 38, a3 = 65, a4 = 49, a5 = 12, a6 = 42} 排序就可以看出,排序完成后 a1 和 a4的相对位置改变了。
5. 此方法移动元素的次数比较少,但是不管序列中元素初始排列状态如何,第 i 趟排序都需要进行 n – i 次元素之间的比较,因此总的比较次数为
1 + 2 + 3 + 4 +5 + . . . + n – 1 = n(n-1)/2, 时间复杂度是 O(n^2).
//选择排序
void selectsort(int a[], int n){
int i, j, d, temp;
for (i = 0; i < n - 1; i++){
d = i;
for (j = i; j < n; j++){
if (a[j] < a[d])
d = j;
}
if (d != i){
temp = a[d];
a[d] = a[i];
a[i] = temp;
}
}
}
快速排序:
快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
排序演示
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
6
|
2
|
7
|
3
|
8
|
9
|
下标
|
0
|
1
|
2
|
3 |
4
|
5
|
数据
|
3
|
2
|
7
|
3
|
8
|
9
|
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
3
|
2
|
7
|
7
|
8
|
9
|
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
3
|
2
|
6
|
7
|
8
|
9
|
实现代码:
void quick_sort(int s[], int l, int r)
{
if (l < r)
{
//Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1
int i = l, j = r, x = s[l];
while (i < j)
{
while(i < j && s[j] >= x) // 从右向左找第一个小于x的数
j--;
if(i < j)
s[i++] = s[j];
while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数
i++;
if(i < j)
s[j--] = s[i];
}
s[i] = x;
quick_sort(s, l, i - 1); // 递归调用
quick_sort(s, i + 1, r);
}
}
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/aiops/7290.html