互联网运营遇到瓶颈?这套数据运营体系,高手和小白都必看

数据分析在运营工作中无处不在,无论是活动复盘、专题报告、项目优化,还是求职面试,数据分析都有一席之地。

对于数据分析,我发现很多运营都有这样一些困惑:

不知道从哪里获取数据;

不知道用什么样的工具;

不清楚分析的方法论和框架;

大部分的数据分析流于形式;

……

其实,数据分析并没有大家想象的那么难!接触了很多数据从业者,总结了这篇文章,希望对有志于学习数据分析的运营同学有所帮助。

一、概念:数据和数据分析

其实大家一直都在接触数据和数据分析,但是对于两者具体的定义又很难说清楚。我曾经做过一个调查,问一些运营同学,下面5个选项哪些属于“数据”概念的范围。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图1:哪些属于“数据”概念范围

大部分人都知道把“4.报表”选上,但是很难有人会认为上面5个选项都是。其实这反映了一个很普遍的现象:很多人都会先入为主,认为数据就是各种表格、各种数字,例如excel报表、各种数据库。其实这是一个错误或者说有偏差的认识,它会使得我们对数据的认识变得很狭隘。

(一)什么是数据?

数据(data)是描述事物的符号记录,是构成信息或者知识的原始材料。这种哲学层次的定义,让数据的范围极大丰富,也符合目前“大数据”发展的需要。试想一下,现在很多搜索引擎做的 “图片识别”、“音频识别” 难道不是数据分析的一部分吗?

作为一名互联网企业的运营从业者,我们接触到的数据可能没有那么复杂,但是也有很多类别。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图2:互联网企业运营从业者可能接触到的数据

从数据的来源来看,可以分为企业外部数据和内部数据。外部数据主要包括社会人口、宏观经济、新闻舆情和市场调研数据;内部数据包括用户行为数据、服务端日志数据、CRM与交易数据。不同数据的获取途径、分析方法、分析目的都不尽相同,不同行业、不同企业在实际分析中也都各有偏好。

那么我们常见的“信息”和“数据”有何不同?

数据是信息的载体和表现形式;信息是数据的内涵,信息加载于数据之上。以书本和知识为例,书本属于数据概念范畴,知识属于信息概念范畴;书本是知识的一种载体和表现形式,知识是书本的内涵和升华。

(二)什么是数据分析?

数据分析是指从数据中提取有用的信息,并指导实践。

这里有两个点需要注意:首先,我们需要提取的是有用的信息,而不是自嗨;其次,这些信息需要用来指导实践,而不是流于形式。

二、思路:方法论和方法

很多新人入门数据分析的时候,要么胡子眉毛一把抓,要么无从下手。这都是缺少分析思路的表现,需要宏观的方法论和微观的方法来指导。

那么方法论和方法有什么区别?

方法论是从宏观角度出发,从管理和业务的角度提出的分析框架,指导我们接下来具体分析的方向。方法是微观的概念,是指我们在具体分析过程中使用的方法。

(一)方法论

数据分析的方法论很多,这里我给大家介绍一些常见的框架。

1.SWOT分析法:从优势(Strength)、劣势(Weakness)、机遇(Opportunity)、威胁(Threat)四个方面分析内外环境,适用于宏观分析。

2.5W2H分析法:从Why、When、Where、What、Who、How、How much 7个常见的维度分析问题。

3.4P理论:经典营销理论,认为产品(Product)、价格(Price)、渠道(Place)和促销(Promote)是影响市场的重要因素。

4.AARRR:增长黑客的海盗法则,精益创业的重要框架,从获取(Acquisition)、激活(Activation)、留存(Retention)、变现(Revenue)和推荐(Referral)5个环节增长

数据分析的方法论很多,这里不能一一列举;没有最好的方法论,只有最合适的。下面我详细介绍一下 AARRR 方法论,对于精益化运营、业务增长的问题,这个方法论非常契合。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图3:AARRR方法论

对于互联网产品而言,用户具有明显的生命周期特征,下面我以一个O2O行业的APP为例阐述一下。

首先通过各种线上、线下的渠道获取新用户,下载安装APP。安装完APP后,通过运营手段激活用户;比如说首单免费、代金券、红包等方式。通过一系列的运营使部分用户留存下来,并且给企业带营收。在这个过程中,如果用户觉得这个产品不错,可能推荐给身边的人;或者通过红包等激励手段鼓励分享到朋友圈等等。

需要注意的是,这5个环节并不是完全按照上面顺序来的;运营可以根据业务需要灵活应用。

AARRR的五个环节都可以通过数据指标来衡量与分析,从而实现精益化运营的目的;每个环节的提升都可以有效增长业务。我们下面的分析也是围绕这个方法论展开的。

(二)方法

根据运营工作的实际需要,我整理了7种分析方法。借助常见的网站/APP数据分析产品,我们非常快速的完成这7种分析。

1.趋势分析

趋势分析是最简单、最基础,也是最常见的数据监测与数据分析方法。通常我们在数据分析产品中建立一张数据指标的线图或者柱状图,然后持续观察,重点关注异常值。

在这个过程中,我们要选定第一关键指标(OMTM,One Metric That Matter),而不要被虚荣指标(vanity metrics )所迷惑。

以社交类APP为例,如果我们将下载量作为第一关键指标,可能就会走偏;因为用户下载APP并不代表他使用了你的产品。在这种情况下,建议将DAU(Daily Active Users,日活跃用户)作为第一关键指标,而且是启动并且执行了某个操作的用户才能算上去;这样的指标才有实际意义,运营人员要核心关注这类指标。

2.多维分解

多维分解是指从业务需求出发,将指标从多个维度进行拆分;这里的维度包括但不限于浏览器、访问来源、操作系统、广告内容等等。

为什么需要进行多维拆解?有时候一个非常笼统或者最终的指标你是看不出什么问题来的,但是进行拆分之后,很多细节问题就会浮现出来。

举个例子,某网站的跳出率是0.47、平均访问深度是4.39、平均访问时长是0.55分钟。如果你要提升用户的参与度,显然这样的数据会让你无从下手;但是你对这些指标进行拆解之后就会发现很多思路。

下面展示的是一个产品在不同操作系统下的用户参与度指标数据。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图4:不同操作系统用户的参与程度

仔细观察的话,你会发现移动端平台(Android、Windows Phone、IOS)的用户参与度极差,表现在跳出率极高、访问深度和平均访问时长很低。这样的话你就会发现问题,是不是我们的产品在移动端上没有做优化导致用户体验不好?在这样一个移动互联网时代,这是非常重要的一个问题。

3.用户分群

用户分群主要有两种分法:维度和行为组合。第一种根据用户的维度进行分群,比如从地区维度分,有北京、上海、广州、杭州等地的用户;从用户登录平台进行分群,有PC端、平板端和手机移动端用户。第二种根据用户行为组合进行分群,比如说每周在社区签到3次的用户与每周在社区签到少于3次的用户的区别,这个具体的我会在后面的留存分析中介绍。

4.用户细查

正如前面所说的,用户行为数据也是数据的一种,观察用户在你产品内的行为路径是一种非常直观的分析方法。在用户分群的基础上,一般抽取3-5个用户进行细查,即可覆盖分群用户大部分行为规律。

我们以一个产品的注册流程为例:

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图5:用户行为轨迹

5.漏斗分析

漏斗是用于衡量转化效率的工具,因为从开始到结束的模型类似一个漏斗,因而得名。漏斗分析要注意的两个要点:第一,不但要看总体的转化率,还要关注转化过程每一步的转化率;第二,漏斗分析也需要进行多维度拆解,拆解之后可能会发现不同维度下的转化率也有很大差异。

某企业的注册流程采用邮箱方式,注册转化率一直很低,才27%;通过漏斗分析可以发现原因。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图6:注册转化率

经过了解发现,邮箱验证非常容易出现注册邮箱收不到邮件的情况,原因包括邮件代理商被屏蔽、邮件含有敏感字被归入垃圾邮箱、邮件送达时间过长等等。既然这么多不可控因素影响注册转化率,那就换一种验证方式。换成短信验证后,总体转化率提升到了43%,这是非常大的一个增长。

6.留存分析

留存,顾名思义就是新用户留下来持续使用产品的含义。衡量留存的常见指标有:次日留存率、7日留存率、30日留存率等等。我们可以从两个方面去分析留存,一个是新用户的留存率,另一个是产品功能的留存。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图7:两种用户群体的留存差异

7.A/B测试与A/A测试

A/B测试是为了达到一个目标,采取了两套方案,一组用户采用A方案,一组用户采用B方案。通过实验观察两组方案的数据效果,判断两组方案的好坏。

在A/B测试方面,谷歌是不遗余力地尝试;对于搜索结果的显示,谷歌会制定多种不同的方案(包括文案标题,字体大小,颜色等等),不断来优化搜索结果中广告的点击率。

这里需要注意的一点,A/B测试之前最好有A/A测试或者类似准备。什么是A/A测试?A/A测试是评估两个实验组是否是处于相同的水平,这样A/B测试才有意义。其实这和学校里面的控制变量法、实验组与对照组、双盲试验本质一样的。

三、流程:宏观、中观和微观

有了具体的分析方法还不够,运营要做好数据分析还需要一个清晰的流程。在这里我从宏观、中观和微观三个层次给大家介绍一下。

(一)宏观

1.中国古代朴素的分析哲学

其实数据分析自古有之,中国古代很多名人从事的其实就是数据分析的工作;他们的名称可能不是数据分析师,更多的是“丞相”、“军师”。

他们通过 “历史统计”-“经验总结”-“预测未来” 为自己的组织创造了极大的价值,这是中国古代朴素的分析哲学的重要内容。

2.精益创业的MVP理念

风靡硅谷的精益创业,它推崇MVP(最简化可行产品)的理念,通过小步快跑的方式来不断优化产品、增长用户。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

图9:构建-衡量-优化

在运营工作中,我们要大胆尝试,将想法转化成产品和运营方法。然后分析其中的数据,衡量产品或者运营的效果。如果好的话保持并大力推广,如果不好的话总结问题及时改进。在“构建-“衡量”-“学习”的不断循环中逐渐优化,这个流程是非常适合运营工作的。

(二)中观

《谁说菜鸟不会数据分析》书中介绍了更为具体的分析流程:1.明确分析目的和思路 →2.数据收集 →3.数据处理 →4.数据分析 →5.数据展现 →6.报告撰写。

这个流程只是从“数据”的角度阐述了前后的流程,并未结合业务实际;而且它将数据分析的落脚点定位于“报告撰写”是具有误导性的,因为数据分析的最终目的是为了指导实践,而不是写一份报告。

但是这个流程仍具有参考价值,尤其是 “明确分析目的和思路” 对于新手入门具有一定的指导意义。

(三)微观

下面介绍的是一个非常详细的分析流程,借助于一定的分析工具,我们可以按照这个思路对您的网站/APP进行细致入微的分析。

它的前提是用数据分析工具做好数据采集和监控工作,把精力集中在业务分析上。这个流程的核心是“MVP”的理念,“发现问题”-“设计实验”-“分析结果”,通过数据来不断优化产品和运营。

四、应用:体系和分析

(一)案例1:搭建数据分析体系

新媒体人都有阅读量不高的时候吧,我总结了一下都是如下的问题:

不清楚自己需要关注哪些核心指标;

不清楚目标用户的特征(用户属性、用户画像等);

对自己过往工作缺乏系统分析(数据采集、监测和分析)。

从业务增长的角度出发,我给小张量身定做了一套数据分析体系,配合其内容工作的开展。

第一点,内容定位。

运营需要明确知道自己的目标或者KPI,然后选择一个核心关键指标(OMTM)进行监测。如果是创业公司,初期可能需要拉新,那么核心指标是注册用户数或者新访问用户数。如果是资讯媒体,注重影响力和覆盖面,那么核心指标应该是阅读数或者网页PV。

第二点,用户画像。

无论是哪一种运营岗位,都需要明确知道自己的(目标)用户是哪些人?这些人都有哪些特征,他们的关注点和痛点是什么?

如果你的用户是产品经理,那么可以尝试爬虫抓取产品经理网站上有关的问题,然后做文本分析:这是定量层面的分析。同时,通过调查访问和问卷调研,获取更加深入的用户特征信息:这是从定性层面的分析。

第三点,持续监测。

借助数据分析工具如FineBI,对核心关键指标(OMTM)进行持续监测。对于指标异常情况,我们需要及时分析和改进。

第四点,数据分析。

统计和分析过往内容的数据,找出哪些内容、哪些标题、哪些形式、哪些渠道的效果更好,然后朝这方面不断优化。

五、学习:业务、工具和资源

(一)业务层面

数据分析并没有想象中的高不可及,掌握好相应的概念、思路、流程,运营都可以做好数据分析。这里要着重强调一点,数据分析的目的是指导业务实践;脱离实践的数据分析、为分析而分析的数据分析都是在耍流氓。

不同于职业的数据分析师和数据科学家,运营人员做好数据分析的前提是娴熟的业务理解。从业务的角度来说,数据不是数字,它是用户的心声。运营人员要从数据中发现问题,不断优化,提升用户体验、为用户创造更多的价值。

(二)工具层面

磨刀不误砍柴工,做好数据分析工具必不可少。我汇总了下面几种工具,运营可以结合自己的实际需要采用。

Excel 是最常见、最基础的数据分析工具,Excel 里面的图表、函数、透视表能满足大家基本的需求。但遇到大数据量就不行了,慎用!

Python是一种高级的编程语言,近年来发展很快,它可以用来做数据分析、编程或爬虫;R语言是一种数据分析工具,在统计学中广泛使用。目前,Python被广泛用来编写爬虫程序,获取网上的信息,这是对运营人员非常有帮助的。

互联网产品运营,运营思路,常用的数据分析方法,用户运营数据分析

BI工具如FineBI都是可以值得一试的,这也是数据分析工具的未来发展方向。

很显然在目前的信息时代,借助类似于FineBI的这些工具,可以让企业加速融入企业数据分析的趋势。备受市场认可的软件其实有很多,选择时必须要结合实际的情况。一般的情况下,都建议选择市面上较主流的产品,比较容易达到好的效果,目前企业数据分析BI软件市场占有率前列的,就是帆软BI软件——FineBI。

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/173316.html

(0)
上一篇 2021年9月28日 05:14
下一篇 2021年9月28日 05:14

相关推荐

发表回复

登录后才能评论