MapReduce(二)常用三大组件详解大数据

mapreduce三大组件:Combiner/Sort/Partitioner

 默认组件:排序,分区(不设置,系统有默认值)

一、mapreduce中的Combiner

    1、什么是combiner

Combiner 是 MapReduce 程序中 Mapper 和 Reducer 之外的一种组件,它的作用是在 maptask 之后给 maptask 的结果进行局部汇总,以减轻 reducetask 的计算负载,减少网络传输
    2、如何使用combiner

  Combiner 和 Reducer 一样,编写一个类,然后继承 Reducer, reduce 方法中写具体的 Combiner 逻辑,然后在 job 中设置 Combiner 类: job.setCombinerClass(FlowSumCombine.class)

(如果combiner和reduce逻辑一样,就不用写combiner类了,直接在job设置信息)

MapReduce(二)常用三大组件详解大数据

   3、使用combiner注意事项  

(1) Combiner 和 Reducer 的区别在于运行的位置:

      Combiner 是在每一个 maptask 所在的节点运行
      Reducer 是接收全局所有 Mapper 的输出结果
(2) Combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来
(3) Combiner 的使用要非常谨慎,因为 Combiner 在 MapReduce 过程中可能调用也可能不调 用,可能调一次也可能调多次,所以: Combiner 使用的原则是:有或没有都不能影响业务 逻辑,都不能影响最终结果(求平均值时,combiner和reduce逻辑不一样)
二、mapreduce中的序列化

     1、概述

Java 的序列化是一个重量级序列化框架( Serializable),一个对象被序列化后,会附带很多额 外的信息(各种校验信息, header,继承体系等),不便于在网络中高效传输;所以, hadoop 自己开发了一套序列化机制( Writable),精简,高效
Hadoop 中的序列化框架已经对基本类型和 null 提供了序列化的实现了。分别是:

MapReduce(二)常用三大组件详解大数据

    2、Java序列化

以案例说明为例:

MapReduce(二)常用三大组件详解大数据

     3、自定义对象实现mapreduce框架的序列化

如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 mapreduce框中的 shuffle 过程一定会对 key 进行排序,此时,自定义的 bean 实现的接口应该是:
public class FlowBean implements WritableComparable<FlowBean>
以案例为例说明
下面是进行了序列化的 FlowBean 类:

MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据

案例:

MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据

1、

package com.ghgj.mr.exerciseflow; 
 
import java.io.DataInput; 
import java.io.DataOutput; 
import java.io.IOException; 
 
import org.apache.hadoop.io.WritableComparable; 
 
public class Flow implements WritableComparable<Flow>{ 
 
	private String phone; 
	private long upflow;	// 上行流量 
	private long downflow;	// 下行流量 
	private long sumflow;	// 上行和下行流量之和 
	public long getUpflow() { 
		return upflow; 
	} 
	public void setUpflow(long upflow) { 
		this.upflow = upflow; 
	} 
	public long getDownflow() { 
		return downflow; 
	} 
	public void setDownflow(long downflow) { 
		this.downflow = downflow; 
	} 
	public long getSumflow() { 
		return sumflow; 
	} 
	public void setSumflow(long sumflow) { 
		this.sumflow = sumflow; 
	} 
	public String getPhone() { 
		return phone; 
	} 
	public void setPhone(String phone) { 
		this.phone = phone; 
	} 
	public Flow() { 
	} 
	public Flow(long upflow, long downflow, String phone) { 
		super(); 
		this.upflow = upflow; 
		this.downflow = downflow; 
		this.sumflow = upflow + downflow; 
		this.phone = phone; 
	} 
	@Override 
	public String toString() { 
		return phone +"/t" + upflow +"/t" + downflow +"/t" + sumflow; 
	} 
	@Override 
	public void write(DataOutput out) throws IOException { 
		// TODO Auto-generated method stub 
		out.writeLong(upflow); 
		out.writeLong(downflow); 
		out.writeLong(sumflow); 
		out.writeUTF(phone); 
	} 
	@Override 
	public void readFields(DataInput in) throws IOException { 
		// TODO Auto-generated method stub 
		this.upflow = in.readLong(); 
		this.downflow = in.readLong(); 
		this.sumflow = in.readLong(); 
		this.phone = in.readUTF(); 
	} 
	@Override 
	public int compareTo(Flow flow) { 
		if((flow.getSumflow() - this.sumflow) == 0){ 
			return this.phone.compareTo(flow.getPhone()); 
		}else{ 
			return (int)(flow.getSumflow() - this.sumflow); 
		} 
	} 
} 

 

package com.ghgj.mr.exerciseflow; 
 
import java.io.IOException; 
 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 
/** 
 * 手机号	上行流量	下行流量	总流量 
 * @author Administrator 
 * 
 */ 
public class FlowExercise1 { 
 
	public static void main(String[] args) throws Exception { 
		 
		Configuration conf = new Configuration(); 
		Job job = Job.getInstance(conf); 
		 
		job.setJarByClass(FlowExercise1.class); 
		 
		job.setMapperClass(FlowExercise1Mapper.class); 
		job.setReducerClass(FlowExercise1Reducer.class); 
		 
		job.setMapOutputKeyClass(Text.class); 
		job.setMapOutputValueClass(Flow.class); 
		 
		job.setOutputKeyClass(Text.class); 
		job.setOutputValueClass(Text.class); 
		 
		FileInputFormat.setInputPaths(job, "d:/flow/input"); 
		FileOutputFormat.setOutputPath(job, new Path("d:/flow/output13")); 
		 
		boolean status = job.waitForCompletion(true); 
		System.exit(status? 0 : 1); 
	} 
	 
	static class FlowExercise1Mapper extends Mapper<LongWritable, Text, Text, Flow>{ 
		@Override 
		protected void map(LongWritable key, Text value,Context context) 
				throws IOException, InterruptedException { 
			String[] splits = value.toString().split("/t"); 
			 
			String phone = splits[1]; 
			long upflow = Long.parseLong(splits[8]); 
			long downflow = Long.parseLong(splits[9]); 
			 
			Flow flow = new Flow(upflow, downflow); 
			context.write(new Text(phone), flow); 
		} 
	} 
 
	static class FlowExercise1Reducer extends Reducer<Text, Flow, Text, Flow>{ 
		@Override 
		protected void reduce(Text phone, Iterable<Flow> flows, Context context) 
				throws IOException, InterruptedException { 
			 
			long sumUpflow = 0;    // 该phone用户的总上行流量 
			long sumDownflow = 0;   
			for(Flow f : flows){ 
				sumUpflow += f.getUpflow(); 
				sumDownflow += f.getDownflow(); 
			} 
			Flow sumFlow = new Flow(sumUpflow, sumDownflow); 
			context.write(phone, sumFlow); 
			 
//			String v = sumUpflow +"/t" + sumDownflow +"/t" + (sumUpflow + sumDownflow); 
//			context.write(phone, new Text(v)); 
		} 
	} 
} 

  2、

package com.ghgj.mr.exerciseflow; 
 
import java.io.IOException; 
 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.NullWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 
public class FlowExercise2Sort { 
	 
	public static void main(String[] args) throws Exception { 
		 
		Configuration conf = new Configuration(); 
		Job job = Job.getInstance(conf); 
		 
		job.setJarByClass(FlowExercise2Sort.class); 
		 
		job.setMapperClass(FlowExercise2SortMapper.class); 
		job.setReducerClass(FlowExercise2SortReducer.class); 
		 
		job.setMapOutputKeyClass(Flow.class); 
		job.setMapOutputValueClass(Text.class); 
		 
//		job.setCombinerClass(FlowExercise1Combiner.class); 
//		job.setCombinerClass(FlowExercise1Reducer.class); 
		 
		job.setOutputKeyClass(NullWritable.class); 
		job.setOutputValueClass(Flow.class); 
		 
		FileInputFormat.setInputPaths(job, "d:/flow/output1"); 
		FileOutputFormat.setOutputPath(job, new Path("d:/flow/sortoutput6")); 
		 
		boolean status = job.waitForCompletion(true); 
		System.exit(status? 0 : 1); 
	} 
	 
	static class FlowExercise2SortMapper extends Mapper<LongWritable, Text, Flow, Text>{ 
		@Override 
		protected void map(LongWritable key, Text value, 
				Mapper<LongWritable, Text, Flow, Text>.Context context) 
				throws IOException, InterruptedException { 
			 
			String[] splits = value.toString().split("/t"); 
			 
			String phone = splits[0]; 
			long upflow = Long.parseLong(splits[1]); 
			long downflow = Long.parseLong(splits[2]); 
//			long sumflow = Long.parseLong(splits[3]); 
			Flow flow = new Flow(upflow, downflow, phone); 
			 
			context.write(flow, new Text(phone)); 
		} 
	} 
	 
	static class FlowExercise2SortReducer extends Reducer<Flow, Text, NullWritable, Flow>{ 
		@Override 
		protected void reduce(Flow flow, Iterable<Text> phones, Context context) 
				throws IOException, InterruptedException { 
			 
			for(Text t : phones){ 
				context.write(NullWritable.get(), flow); 
			} 
		} 
	} 
} 

  三、mapreduce中的sort

需求: 把上例求得的流量综合从大到小倒序排
基本思路:实现自定义的 bean 来封装流量信息,并将 bean 作为 map 输出的 key 来传输 MR 程序在处理数据的过程中会对数据排序(map 输出的 kv 对传输到 reduce 之前,会排序), 排序的依据是 map 输出的 key, 所以,我们如果要实现自己需要的排序规则,则可以考虑将
排序因素放到 key 中,让 key 实现接口: WritableComparable, 然后重写 key 的 compareTo 方法
(上面第二题)

     四、mapreduce中的partitioner

需求: 根据归属地输出流量统计数据结果到不同文件,以便于在查询统计结果时可以定位到 省级范围进行
思路:MapReduce 中会将 map 输出的 kv 对,按照相同 key 分组,然后分发给不同的 reducetask
默认的分发规则为:根据 key 的 hashcode%reducetask 数来分发, 所以:如果要按照我们自 己的需求进行分组,则需要改写数据分发(分组)组件 Partitioner
自定义一个 CustomPartitioner 继承抽象类: Partitioner
然后在 job 对象中,设置自定义 partitioner: job.setPartitionerClass(ProvincePartitioner.class)

(上面第三题)

MapReduce(二)常用三大组件详解大数据

MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据MapReduce(二)常用三大组件详解大数据

 

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/7722.html

(0)
上一篇 2021年7月18日 22:10
下一篇 2021年7月18日 22:11

相关推荐

发表回复

登录后才能评论