引言:过滤器的类型很多,但是可以分为两大类——比较过滤器,专用过滤器
过滤器的作用是在服务端判断数据是否满足条件,然后只将满足条件的数据返回给客户端;
一、hbase过滤器的分类
1、比较过滤器
行键过滤器 RowFilter
Filter filter1 = new RowFilter(CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-22"))); scan.setFilter(filter1);
列族过滤器 FamilyFilter
Filter filter1 = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("colfam3"))); scan.setFilter(filter1);
列过滤器 QualifierFilter
Filter filter = new QualifierFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("col-2"))); scan.setFilter(filter1);
值过滤器 ValueFilter
Filter filter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator(".4") ); scan.setFilter(filter1);
2、专用过滤器
单列值过滤器 SingleColumnValueFilter —-会返回满足条件的整行
SingleColumnValueFilter filter = new SingleColumnValueFilter( Bytes.toBytes("colfam1"), Bytes.toBytes("col-5"), CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("val-5")); filter.setFilterIfMissing(true); //如果不设置为 true,则那些不包含指定 column 的行也会返回 scan.setFilter(filter1);
单列值排除器 SingleColumnValueExcludeFilter —–返回排除了该列的结果 与上面的结果相反
前缀过滤器 PrefixFilter—-针对行键
Filter filter = new PrefixFilter(Bytes.toBytes("row1")); scan.setFilter(filter1);
列前缀过滤器 ColumnPrefixFilter
Filter filter = new ColumnPrefixFilter(Bytes.toBytes("qual2")); scan.setFilter(filter1);
分页过滤器 PageFilter
代码实现:
package com.ghgj.hbase; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.BinaryComparator; import org.apache.hadoop.hbase.filter.BinaryPrefixComparator; import org.apache.hadoop.hbase.filter.ByteArrayComparable; import org.apache.hadoop.hbase.filter.ColumnPrefixFilter; import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp; import org.apache.hadoop.hbase.filter.FamilyFilter; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.filter.MultipleColumnPrefixFilter; import org.apache.hadoop.hbase.filter.PageFilter; import org.apache.hadoop.hbase.filter.PrefixFilter; import org.apache.hadoop.hbase.filter.QualifierFilter; import org.apache.hadoop.hbase.filter.RegexStringComparator; import org.apache.hadoop.hbase.filter.RowFilter; import org.apache.hadoop.hbase.filter.SingleColumnValueFilter; import org.apache.hadoop.hbase.filter.SubstringComparator; import org.apache.hadoop.hbase.util.Bytes; import org.junit.Test; public class HbasePageDemo { // 声明静态配置 static Configuration conf = null; private static final String ZK_CONNECT_STR = "hadoop01:2181,hadoop02:2181,hadoop03:2181,hadoop04:2181,hadoop05:2181"; static { conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", ZK_CONNECT_STR); } public static void main(String[] args) throws Exception { String tableName = "testfilter"; String cfName = "f1"; final byte[] POSTFIX = new byte[] { 0x00 }; HTable table = new HTable(conf, tableName); Filter filter = new PageFilter(3); byte[] lastRow = null; int totalRows = 0; while (true) { Scan scan = new Scan(); scan.setFilter(filter); if(lastRow != null){ //注意这里添加了 POSTFIX 操作,用来重置扫描边界 byte[] startRow = Bytes.add(lastRow,POSTFIX); scan.setStartRow(startRow); } ResultScanner scanner = table.getScanner(scan); int localRows = 0; Result result; while((result = scanner.next()) != null){ System.out.println(localRows++ + ":" + result); totalRows ++; lastRow = result.getRow(); } scanner.close(); if(localRows == 0) break; } System.out.println("total rows:" + totalRows); } / ** * 多种过滤条件的使用方法 * @throws Exception */ @Test public void testScan() throws Exception{ HTable table = new HTable(conf, "person".getBytes()); Scan scan = new Scan(Bytes.toBytes("person_zhang_000001"), Bytes.toBytes("person_zhang_000002")); //前缀过滤器----针对行键 Filter filter = new PrefixFilter(Bytes.toBytes("person")); //行过滤器 ---针对行键 ByteArrayComparable rowComparator = new BinaryComparator(Bytes.toBytes("person_zhang_000001")); RowFilter rf = new RowFilter(CompareOp.LESS_OR_EQUAL, rowComparator); rf = new RowFilter(CompareOp.EQUAL , new SubstringComparator("_2016-12-31_")); //单值过滤器 1 完整匹配字节数组 new SingleColumnValueFilter("base_info".getBytes(), "name".getBytes(), CompareOp.EQUAL, "zhangsan".getBytes()); //单值过滤器 2 匹配正则表达式 ByteArrayComparable comparator = new RegexStringComparator("zhang."); new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator); //单值过滤器 3 匹配是否包含子串,大小写不敏感 comparator = new SubstringComparator("wu"); new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator); //键值对元数据过滤-----family 过滤----字节数组完整匹配 FamilyFilter ff = new FamilyFilter(CompareOp.EQUAL , new BinaryComparator(Bytes.toBytes("base_info")) //表中不存 在 inf 列族,过滤结果为空 ); //键值对元数据过滤-----family 过滤----字节数组前缀匹配 ff = new FamilyFilter( CompareOp.EQUAL , new BinaryPrefixComparator(Bytes.toBytes("inf")) //表中存在以 inf 打头的列族 info,过滤结果为该列族所有行 ); //键值对元数据过滤-----qualifier 过滤----字节数组完整匹配 filter = new QualifierFilter( CompareOp.EQUAL , new BinaryComparator(Bytes.toBytes("na")) //表中不存在 na 列,过滤结果为空 ); filter = new QualifierFilter( CompareOp.EQUAL , new BinaryPrefixComparator(Bytes.toBytes("na")) //表中存在以 na 打头的列 name,过滤结果为所有行的该列数据 ); //基于列名(即 Qualifier)前缀过滤数据的 ColumnPrefixFilter filter = new ColumnPrefixFilter("na".getBytes()); //基于列名(即 Qualifier)多个前缀过滤数据的 MultipleColumnPrefixFilter byte[][] prefixes = new byte[][] {Bytes.toBytes("na"), Bytes.toBytes("me")}; filter = new MultipleColumnPrefixFilter(prefixes); //为查询设置过滤条件 scan.setFilter(filter); scan.addFamily(Bytes.toBytes("base_info")); //一行 // Result result = table.get(get); //多行的数据 ResultScanner scanner = table.getScanner(scan); for(Result r : scanner){ /** for(KeyValue kv : r.list()){ String family = new String(kv.getFamily()); System.out.println(family); String qualifier = new String(kv.getQualifier()); System.out.println(qualifier); System.out.println(new String(kv.getValue())); } */ //直接从 result 中取到某个特定的 value byte[] value = r.getValue(Bytes.toBytes("base_info"), Bytes.toBytes("name")); System.out.println(new String(value)); } table.close(); } }
分页过滤器 代码实现:
package com.ghgj.hbase.test1610; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.filter.PageFilter; import org.apache.hadoop.hbase.util.Bytes; /** * 501条 * * 每页100条,求第四页 : 301 - 400 * * pageIndex:第几页 * pageNumber:每页几条 * * * 在hbase当中取一部分数据的取法: * scan 'user_info',{COLUMNS => 'base_info:name', * LIMIT => 4, STARTROW => 'zhangsan_20150701_0001'} * * mysqL:从第几条开始,取多少条 * * 从mysql的分页规则引申到hbase的分页:把startRow转换成mysql的第几条 */ public class HBasePageFilterDemo { private static final String ZK_CONNECT_STR = "hadoop03:2181,hadoop04:2181,hadoop05:2181"; private static final String TABLE_NAME = "user_info"; private static final String FAMILY_BASIC = "base_info"; private static final String FAMILY_EXTRA = "extra_info"; private static final String COLUMN_NAME = "name"; private static final String COLUMN_AGE = "age"; private static final String ROW_KEY = "rk0001"; private static Configuration config = null; private static HTable table = null; static { config = HBaseConfiguration.create(); config.set("hbase.zookeeper.quorum", ZK_CONNECT_STR); try { table = new HTable(config, TABLE_NAME); } catch (Exception e) { e.printStackTrace(); } } public static void main(String[] args) throws Exception { // ResultScanner pageData = getPageData("zhangsan_20150701_0001", 4); ResultScanner pageData = getPageData(2, 4); HBasePrintUtil.printResultScanner(pageData); // String lastRowkey = getLastRowkey(pageData); // System.out.println(lastRowkey); } public static ResultScanner getPageData(int pageIndex, int pageNumber) throws Exception{ // 怎么把pageIndex 转换成 startRow String startRow = null; if(pageIndex == 1){ // 当客户方法只取第一页的分页数据时, ResultScanner pageData = getPageData(startRow, pageNumber); return pageData; }else{ ResultScanner newPageData = null; for(int i=0; i<pageIndex - 1; i++){ // 总共循环次数是比你取的页数少1 newPageData = getPageData(startRow, pageNumber); startRow = getLastRowkey(newPageData); byte[] add = Bytes.add(Bytes.toBytes(startRow), new byte[]{ 0X00 }); startRow = Bytes.toString(add); } newPageData = getPageData(startRow, pageNumber); return newPageData; } } /** * @param startRow * @param pageNumber * @return * * scan 'user_info',{COLUMNS => 'base_info:name', * LIMIT => 4, STARTROW => 'zhangsan_20150701_0001'} * @throws Exception */ public static ResultScanner getPageData(String startRow, int pageNumber) throws Exception{ Scan scan = new Scan(); scan.addColumn(Bytes.toBytes("base_info"), Bytes.toBytes("name")); // 設置當前查询的其实位置 if(!StringUtils.isBlank(startRow)){ scan.setStartRow(Bytes.toBytes(startRow)); } // 第二个参数 Filter pageFilter = new PageFilter(pageNumber); scan.setFilter(pageFilter); ResultScanner rs = table.getScanner(scan); return rs; } public static String getLastRowkey(ResultScanner rs){ String lastRowkey = null; for(Result result : rs){ // System.out.println(result.getRow()); lastRowkey = Bytes.toString(result.getRow()); } return lastRowkey; // return null; } }
多条件过滤时,可以使用FilterList
List<Filter> filters = new ArrayList<Filter>(); SingleColumnValueFilter filter =new SingleColumnValueFilter( Bytes.toBytes("info"), Bytes.toBytes("age"), CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("20"))); filters.add(filter); SingleColumnValueFilter filter1 =new SingleColumnValueFilter( Bytes.toBytes("info"), Bytes.toBytes("age"), CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("18"))); filters.add(filter1); Filter filter2 = new ValueFilter(CompareOp.EQUAL, new SubstringComparator("lisi") ); filters.add(filter2); FilterList f=new FilterList(filters); scan.setFilter(f);
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/7736.html