Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

概述

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

数据准备

数据格式

2015-03,2015-03-10,cookie1 
2015-03,2015-03-10,cookie5 
2015-03,2015-03-12,cookie7 
2015-04,2015-04-12,cookie3 
2015-04,2015-04-13,cookie2 
2015-04,2015-04-13,cookie4 
2015-04,2015-04-16,cookie4 
2015-03,2015-03-10,cookie2 
2015-03,2015-03-10,cookie3 
2015-04,2015-04-12,cookie5 
2015-04,2015-04-13,cookie6 
2015-04,2015-04-15,cookie3 
2015-04,2015-04-15,cookie2 
2015-04,2015-04-16,cookie1

创建表

use cookie; 
drop table if exists cookie5; 
create table cookie5(month string, day string, cookieid string)  
row format delimited fields terminated by ','; 
load data local inpath "/home/hadoop/cookie5.txt" into table cookie5; 
select * from cookie5;

 

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

玩一玩GROUPING SETS和GROUPING__ID

说明

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

GROUPING__ID,表示结果属于哪一个分组集合。

查询语句

select  
  month, 
  day, 
  count(distinct cookieid) as uv, 
  GROUPING__ID 
from cookie.cookie5  
group by month,day  
grouping sets (month,day)  
order by GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month  
UNION ALL  
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day

 

查询结果

 Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

结果说明

第一列是按照month进行分组

第二列是按照day进行分组

第三列是按照month或day分组是,统计这一组有几个不同的cookieid

第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day

再比如

SELECT  month, day, 
COUNT(DISTINCT cookieid) AS uv, 
GROUPING__ID  
FROM cookie5  
GROUP BY month,day  
GROUPING SETS (month,day,(month,day))  
ORDER BY GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month  
UNION ALL  
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day 
UNION ALL  
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

玩一玩CUBE

说明

根据GROUP BY的维度的所有组合进行聚合

查询语句

SELECT  month, day, 
COUNT(DISTINCT cookieid) AS uv, 
GROUPING__ID  
FROM cookie5  
GROUP BY month,day  
WITH CUBE  
ORDER BY GROUPING__ID;

等价于

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5 
UNION ALL  
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month  
UNION ALL  
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day 
UNION ALL  
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

 

查询结果

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

玩一玩ROLLUP

说明

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合

查询语句

— 比如,以month维度进行层级聚合

SELECT  month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID   
FROM cookie5  
GROUP BY month,day WITH ROLLUP  ORDER BY GROUPING__ID;

可以实现这样的上钻过程:
月天的UV->月的UV->总UV

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

–把month和day调换顺序,则以day维度进行层级聚合:

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP详解大数据

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/8988.html

(0)
上一篇 2021年7月19日 09:03
下一篇 2021年7月19日 09:03

相关推荐

发表回复

登录后才能评论