Redis分布式集群和直连的Java客户端调用方式详解大数据

Redis分布式集群和直连的Java客户端调用方式详解大数据

jedis是一个著名的key-value存储系统,而作为其官方推荐的java版客户端jedis也非常强大和稳定,支持事务、管道及有jedis自身实现的分布式。

在这里对jedis关于事务、管道和分布式的调用方式做一个简单的介绍和对比:


一、普通同步方式


最简单和基础的调用方式,

@Test

public void test1Normal() {

    Jedis jedis = new Jedis(“localhost”);

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        String result = jedis.set(“n” + i, “n” + i);

    }

    long end = System.currentTimeMillis();

    System.out.println(“Simple SET: ” + ((end – start)/1000.0) + ” seconds”);

    jedis.disconnect();

}

很简单吧,每次set之后都可以返回结果,标记是否成功。


二、事务方式(Transactions)

redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。

看下面例子:

@Test

public void test2Trans() {

    Jedis jedis = new Jedis(“localhost”);

    long start = System.currentTimeMillis();

    Transaction tx = jedis.multi();

    for (int i = 0; i < 100000; i++) {

        tx.set(“t” + i, “t” + i);

    }

    List<Object> results = tx.exec();

    long end = System.currentTimeMillis();

    System.out.println(“Transaction SET: ” + ((end – start)/1000.0) + ” seconds”);

    jedis.disconnect();

}

我们调用jedis.watch(…)方法来监控key,如果调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操作失败,并不会回滚其他操作。这一点需要注意。还有,我们可以使用discard()方法来取消事务。


三、管道(Pipelining)

有时,我们需要采用异步方式,一次发送多个指令,不同步等待其返回结果。这样可以取得非常好的执行效率。这就是管道,调用方法如下:

@Test

public void test3Pipelined() {

    Jedis jedis = new Jedis(“localhost”);

    Pipeline pipeline = jedis.pipelined();

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        pipeline.set(“p” + i, “p” + i);

    }

    List<Object> results = pipeline.syncAndReturnAll();

    long end = System.currentTimeMillis();

    System.out.println(“Pipelined SET: ” + ((end – start)/1000.0) + ” seconds”);

    jedis.disconnect();

}


四、管道中调用事务

就Jedis提供的方法而言,是可以做到在管道中使用事务,其代码如下:

@Test

public void test4combPipelineTrans() {

    jedis = new Jedis(“localhost”);

    long start = System.currentTimeMillis();

    Pipeline pipeline = jedis.pipelined();

    pipeline.multi();

    for (int i = 0; i < 100000; i++) {

        pipeline.set(“” + i, “” + i);

    }

    pipeline.exec();

    List<Object> results = pipeline.syncAndReturnAll();

    long end = System.currentTimeMillis();

    System.out.println(“Pipelined transaction: ” + ((end – start)/1000.0) + ” seconds”);

    jedis.disconnect();

}

但是经测试(见本文后续部分),发现其效率和单独使用事务差不多,甚至还略微差点。


五、分布式直连同步调用

@Test

public void test5shardNormal() {

    List<JedisShardInfo> shards = Arrays.asList(

            new JedisShardInfo(“localhost”,6379),

            new JedisShardInfo(“localhost”,6380));

    ShardedJedis sharding = new ShardedJedis(shards);

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        String result = sharding.set(“sn” + i, “n” + i);

    }

    long end = System.currentTimeMillis();

    System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    sharding.disconnect();

}

这个是分布式直接连接,并且是同步调用,每步执行都返回执行结果。类似地,还有异步管道调用。


六、分布式直连异步调用

@Test

public void test6shardpipelined() {

    List<JedisShardInfo> shards = Arrays.asList(

            new JedisShardInfo(“localhost”,6379),

            new JedisShardInfo(“localhost”,6380));

    ShardedJedis sharding = new ShardedJedis(shards);

    ShardedJedisPipeline pipeline = sharding.pipelined();

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        pipeline.set(“sp” + i, “p” + i);

    }

    List<Object> results = pipeline.syncAndReturnAll();

    long end = System.currentTimeMillis();

    System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    sharding.disconnect();

}


七、分布式连接池同步调用

如果,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,因为直连方式是非线程安全的,这个时候,你就必须选择连接池调用。

@Test

public void test7shardSimplePool() {

    List<JedisShardInfo> shards = Arrays.asList(

            new JedisShardInfo(“localhost”,6379),

            new JedisShardInfo(“localhost”,6380));

    ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);

    ShardedJedis one = pool.getResource();

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        String result = one.set(“spn” + i, “n” + i);

    }

    long end = System.currentTimeMillis();

    pool.returnResource(one);

    System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    pool.destroy();

}

上面是同步方式,当然还有异步方式。


八、分布式连接池异步调用

@Test

public void test8shardPipelinedPool() {

    List<JedisShardInfo> shards = Arrays.asList(

            new JedisShardInfo(“localhost”,6379),

            new JedisShardInfo(“localhost”,6380));

    ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);

    ShardedJedis one = pool.getResource();

    ShardedJedisPipeline pipeline = one.pipelined();

    long start = System.currentTimeMillis();

    for (int i = 0; i < 100000; i++) {

        pipeline.set(“sppn” + i, “n” + i);

    }

    List<Object> results = pipeline.syncAndReturnAll();

    long end = System.currentTimeMillis();

    pool.returnResource(one);

    System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    pool.destroy();

}


九、需要注意的地方

事务和管道都是异步模式。在事务和管道中不能同步查询结果。比如下面两个调用,都是不允许的:

     Transaction tx = jedis.multi();

     for (int i = 0; i < 100000; i++) {

         tx.set(“t” + i, “t” + i);

     }

     System.out.println(tx.get(“t1000”).get());  //不允许

     List<Object> results = tx.exec();

     Pipeline pipeline = jedis.pipelined();

     long start = System.currentTimeMillis();

     for (int i = 0; i < 100000; i++) {

         pipeline.set(“p” + i, “p” + i);

     }

     System.out.println(pipeline.get(“p1000”).get()); //不允许

     List<Object> results = pipeline.syncAndReturnAll();

    事务和管道都是异步的,个人感觉,在管道中再进行事务调用,没有必要,不如直接进行事务模式。

    分布式中,连接池的性能比直连的性能略好(见后续测试部分)。

    分布式调用中不支持事务。

    因为事务是在服务器端实现,而在分布式中,每批次的调用对象都可能访问不同的机器,所以,没法进行事务。


十、测试


运行上面的代码,进行测试,其结果如下:

Simple SET: 5.227 seconds

Transaction SET: 0.5 seconds

Pipelined SET: 0.353 seconds

Pipelined transaction: 0.509 seconds


[email protected] SET: 5.289 seconds


[email protected] SET: 0.348 seconds


[email protected] SET: 5.039 seconds


[email protected] SET: 0.401 seconds


另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:


[email protected] SET: 5.494 seconds


[email protected] SET: 0.51 seconds


[email protected] SET: 5.223 seconds


[email protected] SET: 0.518 seconds


下面是10片:


[email protected] SET: 5.9 seconds


[email protected] SET: 0.794 seconds


[email protected] SET: 5.624 seconds


[email protected] SET: 0.762 seconds


下面是100片:


[email protected] SET: 14.055 seconds


[email protected] SET: 8.185 seconds


[email protected] SET: 13.29 seconds


[email protected] SET: 7.767 seconds

分布式中,连接池方式调用不但线程安全外,根据上面的测试数据,也可以看出连接池比直连的效率更好。


十一、完整的测试代码

import java.util.Arrays;

import java.util.List;

import org.junit.AfterClass;

import org.junit.BeforeClass;

import org.junit.Test;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.JedisPoolConfig;

import redis.clients.jedis.JedisShardInfo;

import redis.clients.jedis.Pipeline;

import redis.clients.jedis.ShardedJedis;

import redis.clients.jedis.ShardedJedisPipeline;

import redis.clients.jedis.ShardedJedisPool;

import redis.clients.jedis.Transaction;

import org.junit.FixMethodOrder;

import org.junit.runners.MethodSorters;

@FixMethodOrder(MethodSorters.NAME_ASCENDING)

public class TestJedis {

    private static Jedis jedis;

    private static ShardedJedis sharding;

    private static ShardedJedisPool pool;

    @BeforeClass

    public static void setUpBeforeClass() throws Exception {

        List<JedisShardInfo> shards = Arrays.asList(

                new JedisShardInfo(“localhost”,6379),

                new JedisShardInfo(“localhost”,6379)); //使用相同的ip:port,仅作测试

        jedis = new Jedis(“localhost”);

        sharding = new ShardedJedis(shards);

        pool = new ShardedJedisPool(new JedisPoolConfig(), shards);

    }

    @AfterClass

    public static void tearDownAfterClass() throws Exception {

        jedis.disconnect();

        sharding.disconnect();

        pool.destroy();

    }

    @Test

    public void test1Normal() {

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            String result = jedis.set(“n” + i, “n” + i);

        }

        long end = System.currentTimeMillis();

        System.out.println(“Simple SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test2Trans() {

        long start = System.currentTimeMillis();

        Transaction tx = jedis.multi();

        for (int i = 0; i < 100000; i++) {

            tx.set(“t” + i, “t” + i);

        }

        //System.out.println(tx.get(“t1000”).get());

        List<Object> results = tx.exec();

        long end = System.currentTimeMillis();

        System.out.println(“Transaction SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test3Pipelined() {

        Pipeline pipeline = jedis.pipelined();

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            pipeline.set(“p” + i, “p” + i);

        }

        //System.out.println(pipeline.get(“p1000”).get());

        List<Object> results = pipeline.syncAndReturnAll();

        long end = System.currentTimeMillis();

        System.out.println(“Pipelined SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test4combPipelineTrans() {

        long start = System.currentTimeMillis();

        Pipeline pipeline = jedis.pipelined();

        pipeline.multi();

        for (int i = 0; i < 100000; i++) {

            pipeline.set(“” + i, “” + i);

        }

        pipeline.exec();

        List<Object> results = pipeline.syncAndReturnAll();

        long end = System.currentTimeMillis();

        System.out.println(“Pipelined transaction: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test5shardNormal() {

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            String result = sharding.set(“sn” + i, “n” + i);

        }

        long end = System.currentTimeMillis();

        System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test6shardpipelined() {

        ShardedJedisPipeline pipeline = sharding.pipelined();

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            pipeline.set(“sp” + i, “p” + i);

        }

        List<Object> results = pipeline.syncAndReturnAll();

        long end = System.currentTimeMillis();

        System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test7shardSimplePool() {

        ShardedJedis one = pool.getResource();

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            String result = one.set(“spn” + i, “n” + i);

        }

        long end = System.currentTimeMillis();

        pool.returnResource(one);

        System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

    @Test

    public void test8shardPipelinedPool() {

        ShardedJedis one = pool.getResource();

        ShardedJedisPipeline pipeline = one.pipelined();

        long start = System.currentTimeMillis();

        for (int i = 0; i < 100000; i++) {

            pipeline.set(“sppn” + i, “n” + i);

        }

        List<Object> results = pipeline.syncAndReturnAll();

        long end = System.currentTimeMillis();

        pool.returnResource(one);

        System.out.println(”
[email protected] SET: ” + ((end – start)/1000.0) + ” seconds”);

    }

}

Redis分布式集群和直连的Java客户端调用方式详解大数据

转载请注明来源网站:blog.ytso.com谢谢!

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/9692.html

(0)
上一篇 2021年7月19日 11:28
下一篇 2021年7月19日 11:28

相关推荐

发表回复

登录后才能评论