使用MapReduce求各个部门的人数和平均工资详解大数据

问题分析
求各个部门的人数和平均工资,需要得到各部门工资总数和部门人数,通过两者相除获取各部门平均工资。首先和问题1类似在Mapper的Setup阶段缓存部门数据,然后在Mapper阶段抽取出部门编号和员工工资,利用缓存部门数据把部门编号对应为部门名称,接着在Shuffle阶段把传过来的数据处理为部门名称对应该部门所有员工工资的列表,最后在Reduce中按照部门归组,遍历部门所有员工,求出总数和员工数,输出部门名称和平均工资。

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class Q2DeptNumberAveSalary extends Configured implements Tool {

    public static class MapClass extends Mapper<LongWritable, Text, Text, Text> {

        private Map<String, String> deptMap = new HashMap<String, String>();
        private String[] kv;

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            BufferedReader in = null;
            try {
                URI[] paths = DistributedCache.getCacheFiles(context.getConfiguration());
                String deptIdName = null;
                for (URI path : paths) {

                    if (path.toString().contains("dept")) {
                        in = new BufferedReader(new FileReader(path.toString()));
                        while (null != (deptIdName = in.readLine())) {

                            deptMap.put(deptIdName.split(",")[0], deptIdName.split(",")[1]);
                        }
                    }
                }
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                try {
                    if (in != null) {
                        in.close();
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }

        // 【map阶段】 输入:员工信息  输出:每个员工对应的<部门名,工资>
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            kv = value.toString().split(",");

            if (deptMap.containsKey(kv[7])) {
                if (null != kv[5] && !"".equals(kv[5].toString())) {
                    context.write(new Text(deptMap.get(kv[7].trim())), new Text(kv[5].trim()));
                }
            }
        }
    }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {
        // 【reduce阶段】输入:map阶段的结果   输出:key值为shuffle阶段的key值部门号,value是部门人数统计及平均工资
        public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {

            long sumSalary = 0;
            int deptNumber = 0;

            for (Text val : values) {
                sumSalary += Long.parseLong(val.toString());
                deptNumber++;
            }

            context.write(key, new Text("Dept Number:" + deptNumber + ", Ave Salary:" + sumSalary / deptNumber));
        }
    }

    @Override
    public int run(String[] args) throws Exception {

        Job job = new Job(getConf(), "Q2DeptNumberAveSalary");
        job.setJobName("Q2DeptNumberAveSalary");
        job.setJarByClass(Q2DeptNumberAveSalary.class);
        job.setMapperClass(MapClass.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormatClass(TextInputFormat.class);

        job.setOutputFormatClass(TextOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        String[] otherArgs = new GenericOptionsParser(job.getConfiguration(), args).getRemainingArgs();
        DistributedCache.addCacheFile(new Path(otherArgs[0]).toUri(), job.getConfiguration());
        FileInputFormat.addInputPath(job, new Path(otherArgs[1]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));

        job.waitForCompletion(true);
        return job.isSuccessful() ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new Q2DeptNumberAveSalary(), args);
        System.exit(res);
    }
}

用于计算的基础数据请参考:http://blog.ytso.com/post/17840.html

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/9808.html

(0)
上一篇 2021年7月19日 11:35
下一篇 2021年7月19日 11:36

相关推荐

发表回复

登录后才能评论