问题分析
求各个城市员工的总工资,需要得到各个城市所有员工的工资,通过对各个城市所有员工工资求和得到总工资。首先和测试例子1类似在Mapper的Setup阶段缓存部门对应所在城市数据,然后在Mapper阶段抽取出key为城市名称(利用缓存数据把部门编号对应为所在城市名称),value为员工工资,接着在Shuffle阶段把传过来的数据处理为城市名称对应该城市所有员工工资,最后在Reduce中按照城市归组,遍历城市所有员工,求出工资总数并输出。
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Q4SumCitySalary extends Configured implements Tool {
public static class MapClass extends Mapper<LongWritable, Text, Text, Text> {
private Map<String, String> deptMap = new HashMap<String, String>();
private String[] kv;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
BufferedReader in = null;
try {
URI[] paths = DistributedCache.getCacheFiles(context.getConfiguration());
String deptIdName = null;
for (URI path : paths) {
if (path.toString().contains("dept")) {
in = new BufferedReader(new FileReader(path.toString()));
while (null != (deptIdName = in.readLine())) {
// key为部门号,value为部门名
deptMap.put(deptIdName.split(",")[0], deptIdName.split(",")[2]);
}
}
}
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
if (in != null) {
in.close();
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
// 【map阶段】通过部门号找出每个部门所有的个体的工资,并输出得到:<部门所对应的城市名,每个个体的工资>
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
kv = value.toString().split(",");
if (deptMap.containsKey(kv[7])) {
if (null != kv[5] && !"".equals(kv[5].toString())) {
context.write(new Text(deptMap.get(kv[7].trim())), new Text(kv[5].trim()));
}
}
}
}
public static class Reduce extends Reducer<Text, Text, Text, LongWritable> {
// 【reduce阶段】所干的活就是把相同key中的value做一个累加,输出:<城市名,工资总数>
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
long sumSalary = 0;
for (Text val : values) {
sumSalary += Long.parseLong(val.toString());
}
context.write(key, new LongWritable(sumSalary));
}
}
@Override
public int run(String[] args) throws Exception {
Job job = new Job(getConf(), "Q4SumCitySalary");
job.setJobName("Q4SumCitySalary");
job.setJarByClass(Q4SumCitySalary.class);
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String[] otherArgs = new GenericOptionsParser(job.getConfiguration(), args).getRemainingArgs();
DistributedCache.addCacheFile(new Path(otherArgs[0]).toUri(), job.getConfiguration());
FileInputFormat.addInputPath(job, new Path(otherArgs[1]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
job.waitForCompletion(true);
return job.isSuccessful() ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new Q4SumCitySalary(), args);
System.exit(res);
}
}
用于计算的基础数据请参考:http://blog.ytso.com/post/17840.html
原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/tech/bigdata/9811.html