描述
用户-视频互动表tb_user_video_log
id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
1 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 0 | 1 | 1 | NULL |
2 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
3 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 0 | 1 | 0 | 1732526 |
4 | 102 | 2002 | 2021-09-10 11:00:00 | 2021-09-10 11:00:30 | 1 | 0 | 1 | NULL |
5 | 103 | 2002 | 2021-10-01 10:59:05 | 2021-10-01 11:00:05 | 1 | 0 | 0 | NULL |
(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)
短视频信息表tb_video_info
id | video_id | author | tag | duration | release_time |
1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
3 | 2003 | 902 | 旅游 | 90 | 2020-01-01 07:00:00 |
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
问题:统计在有用户互动的最近一个月(按包含当天在内的近30天算,比如10月31日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。
注:转发率=转发量÷播放量。结果按转发率降序排序。
输出示例:
示例数据的输出结果如下
tag | retweet_cut | retweet_rate |
影视 | 2 | 0.667 |
美食 | 1 | 0.500 |
解释:
由表tb_user_video_log的数据可得,数据转储当天为2021年10月1日。近30天内,影视类视频2001共有3次播放记录,被转发2次,转发率为0.667;美食类视频2002共有2次播放记录,1次被转发,转发率为0.500。
示例1
输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
uid INT NOT NULL COMMENT '用户ID',
video_id INT NOT NULL COMMENT '视频ID',
start_time datetime COMMENT '开始观看时间',
end_time datetime COMMENT '结束观看时间',
if_follow TINYINT COMMENT '是否关注',
if_like TINYINT COMMENT '是否点赞',
if_retweet TINYINT COMMENT '是否转发',
comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
video_id INT UNIQUE NOT NULL COMMENT '视频ID',
author INT NOT NULL COMMENT '创作者ID',
tag VARCHAR(16) NOT NULL COMMENT '类别标签',
duration INT NOT NULL COMMENT '视频时长(秒数)',
release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 0, 1, 1, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 0, 1, 0, 1732526)
,(102, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null)
,(103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, '影视', 30, '2021-01-01 7:00:00')
,(2002, 901, '美食', 60, '2021-01-01 7:00:00')
,(2003, 902, '旅游', 90, '2020-01-01 7:00:00');
输出:
影视|2|0.667
美食|1|0.500
步骤一:先算出转发率
select round(avg(tb1.if_retweet),3) as retweet_rate
from tb_user_video_log tb1
步骤二:根据类别算出每种视频的转发率
select tb2.tag tag,
sum(tb1.if_retweet) retweet_cut,
round(avg(tb1.if_retweet),3) as retweet_rate
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id
group by tb2.tag
步骤三:根据时间找到近一个月数据和排序
select tb2.tag tag,
sum(tb1.if_retweet) retweet_cut,
round(avg(tb1.if_retweet),3) as retweet_rate
from tb_user_video_log tb1
left join tb_video_info tb2
on tb1.video_id = tb2.video_id
WHERE DATEDIFF(DATE((select max(start_time) FROM tb_user_video_log))
, DATE(tb1.start_time)) <= 29
group by tb2.tag
ORDER BY retweet_rate desc
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/database/288900.html