GetRectSubPix
从图像中提取象素矩形,使用子象素精度
void cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center );
- src 输入图像.
- dst 提取的矩形.
- center 提取的象素矩形的中心,浮点数坐标。中心必须位于图像内部.
函数 cvGetRectSubPix 从图像 src 中提取矩形:
dst(x, y) = src(x + center.x - (width(dst)-1)*0.5, y + center.y - (height(dst)-1)*0.5)
其中非整数象素点坐标采用双线性插值提取。对多通道图像,每个通道独立单独完成提取。尽管函数要求矩形的中心一定要在输入图像之中,但是有可能出现矩形的一部分超出图像边界的情况,这时,该函数复制边界的模识(hunnish:即用于矩形相交的图像边界线段的象素来代替矩形超越部分的象素)。
GetQuadrangleSubPix
提取象素四边形,使用子象素精度
void cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst, const CvMat* map_matrix );
- src 输入图像.
- dst 提取的四边形.
- map_matrix 3 × 2 变换矩阵 [A|b] (见讨论).
函数 cvGetQuadrangleSubPix 以子象素精度从图像 src 中提取四边形,使用子象素精度,并且将结果存储于 dst ,计算公式是:
dst(x + width(dst) / 2,y + height(dst) / 2) = src(A11x + A12y + b1,A21x + A22y + b2)
其中 A和 b 均来自映射矩阵(译者注:A, b为几何形变参数) ,映射矩阵为:
的象素点值通过双线性变换得到。当函数需要图像边界外的像素点时,使用重复边界模式(replication border mode)恢复出所需的值。多通道图像的每一个通道都单独计算。
例子:使用 cvGetQuadrangleSubPix 进行图像旋转
#include "cv.h" #include "highgui.h" #include "math.h" int main( int argc, char** argv ) { IplImage* src; /* the first command line parameter must be image file name */ if( argc==2 && (src = cvLoadImage(argv[1], -1))!=0) { IplImage* dst = cvCloneImage( src ); int delta = 1; int angle = 0; cvNamedWindow( "src", 1 ); cvShowImage( "src", src ); for(;;) { float m[6]; double factor = (cos(angle*CV_PI/180.) + 1.1)*3; CvMat M = cvMat( 2, 3, CV_32F, m ); int w = src->width; int h = src->height; m[0] = (float)(factor*cos(-angle*2*CV_PI/180.)); m[1] = (float)(factor*sin(-angle*2*CV_PI/180.)); m[2] = w*0.5f; m[3] = -m[1]; m[4] = m[0]; m[5] = h*0.5f; cvGetQuadrangleSubPix( src, dst, &M, 1, cvScalarAll(0)); cvNamedWindow( "dst", 1 ); cvShowImage( "dst", dst ); if( cvWaitKey(5) == 27 ) break; angle = (angle + delta) % 360; } } return 0; }
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/iot/241693.html