我们常见的数据存储格式无非就是csv、excel、txt以及数据库等形式。
数据读取
在pandas中可以使用一些函数完成数据的读取。比如read_csv、read_excel、read_table、read_sql等,这些分别是啥意思呢。。。。自己看后缀就能明白啦~
下面我们就通过撸代码来了解它们
txt文件
格式:read_table(文件路径与文件名, names=[列名1,列名2,…..], sep=””,……)
其中names为列名,默认为文件中的第一行作为列名
sep为分隔符,默认为空
from pandas import read_table #txt df=read_table(r'D:python_workspaceanacondarz.txt') #查看前五行数据 df.head(5) #查看后两行数据 #df.tail(2)
rz.txt的内容如下
csv文件
格式:read_csv(文件路径与文件名, names=[列名1,列名2,…..], sep=””,……)
解释同上,不在废话
#csv from pandas import read_csv df=read_csv(r'D:python_workspaceanacondarz.csv') df
rz.csv的内容如下
excel文件
格式:read_excel(文件路径与文件名, sheetname=sheet的名称, header=0)
sheetname可以指定读取几个sheet,sheet数目从0开始。如果sheetname=[0,2]则代表读取第一个和第三个sheet
header为0表示以文件第一行作为表头显示;为1则把文件第一行丢弃不作为表头显示。
#exel from pandas import read_excel df=read_excel(r'D:python_workspaceanacondarz.xls', sheetname='Sheet3') df
首先安装pymysql,通过pip命令即可安装
格式:read_sql(要查询的sql语句, 数据库的链接对象)
import pandas as pd import pymysql #具体的数据库链接信息自行替换 conn=pymysql.connect(host='xxxx',database='xxx',user='root', password='',port=3306,charset='utf8') sql='select * from a' r=pd.read_sql(sql,conn) #关闭数据库链接 conn.close() print(r.head(5))
原创文章,作者:carmelaweatherly,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/197964.html