如何进行实时计算框架Flink,Spark Streaming,Storm对比

如何进行实时计算框架Flink,Spark Streaming,Storm对比,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

如何进行实时计算框架Flink,Spark Streaming,Storm对比

如何进行实时计算框架Flink,Spark Streaming,Storm对比

对比分析

如果对延迟要求不高的情况下,建议使用Spark Streaming,丰富的高级API,使用简单,天然对接Spark生态栈中的其他组 件,吞吐量大,部署简单,UI界面也做的更加智能,社区活跃度较高,有问题响应速度也是比较快的,比较适合做流式的ETL,而 且Spark的发展势头也是有目共睹的,相信未来性能和功能将会更加完善。

如果对延迟性要求比较高的话,建议可以尝试下Flink,Flink是目前发展比较火的一个流系统,采用原生的流处理系统,保证了低延迟性,在API和容错性上也是做的比较完善,使用起来相对来说也是比较简单的,部署容易,而且发展势头也越来越好,相信后面社区问题的响应速度应该也是比较快的。

个人对Flink是比较看好的,因为原生的流处理理念,在保证了低延迟的前提下,性能还是比较好的,且越来越易用,社区也在不断 发展。

看完上述内容,你们掌握如何进行实时计算框架Flink,Spark Streaming,Storm对比的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

原创文章,作者:3628473679,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/223234.html

(0)
上一篇 2022年1月6日 21:23
下一篇 2022年1月6日 21:23

相关推荐

发表回复

登录后才能评论