这篇文章主要介绍了LeetCode如何解决前K个高频元素问题,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
题目
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2]
示例 2:
输入: nums = [1], k = 1 输出: [1]
提示:
你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。 你可以按任意顺序返回答案。
思路
-
首先遍历整个数组,并使用哈希表记录每个数字出现的次数,并形成一个「出现次数数组」。找出原数组的前 kk 个高频元素,就相当于找出「出现次数数组」的前 kk 大的值。
-
最简单的做法是给「出现次数数组」排序。但由于可能有 O(N)O(N) 个不同的出现次数(其中 NN 为原数组长度),故总的算法复杂度会达到 O(N/log N)O(NlogN),不满足题目的要求。
-
在这里,我们可以利用堆的思想:建立一个小顶堆,然后遍历「出现次数数组」:
-
如果堆的元素个数小于 kk,就可以直接插入堆中。
-
如果堆的元素个数等于 kk,则检查堆顶与当前出现次数的大小。如果堆顶更大,说明至少有 kk 个数字的
-
出现次数比当前值大,故舍弃当前值;否则,就弹出堆顶,并将当前值插入堆中。
-
遍历完成后,堆中的元素就代表了「出现次数数组」中前 kk 大的值
代码
class Solution { public int[] topKFrequent(int[] nums, int k) { Map<Integer,Integer> occ = new HashMap<Integer,Integer>(); for (int num : nums) { occ.put(num,occ.getOrDefault(num,0)+1); } PriorityQueue<int[]> queue = new PriorityQueue<int[]>(new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[1] - o2[1]; } }); for (Map.Entry<Integer, Integer> integerIntegerEntry : occ.entrySet()) { int num = integerIntegerEntry.getKey(); int count = integerIntegerEntry.getValue(); if(queue.size() == k){ if(queue.peek()[1] < count){ queue.poll(); queue.offer(new int[]{num,count}); } }else { queue.offer(new int[]{num,count}); } } int[] ret = new int[k]; for (int i = 0; i < k; i++) { ret[i] = queue.poll()[0]; } return ret; } }
感谢你能够认真阅读完这篇文章,希望小编分享的“LeetCode如何解决前K个高频元素问题”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/223449.html