elasticsearch文档操作的方法有哪些

这篇文章主要介绍“elasticsearch文档操作的方法有哪些”,在日常操作中,相信很多人在elasticsearch文档操作的方法有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”elasticsearch文档操作的方法有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

文档

查找name=hnatao的数据

rst, _ := client.Search().Index("user").Query(elastic.NewMatchQuery("name", "hnatao")).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[
    {
        "_score": 1.3862942,
        "_index": "user",
        "_type": "_doc",
        "_id": "1",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "hnatao", "age": 21, "score": 80 }
    }
]

查找 20 岁的 hnatao 的数据

q := elastic.NewBoolQuery().Must(
    elastic.NewMatchQuery("name", "hnatao"),
    elastic.NewMatchQuery("age", "20"),
)
rst, _ := client.Search().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[]

查找 20 岁,21 岁的所有用户信息

q := elastic.NewRangeQuery("age").Gte("20").Lte("21")
rst, _ := client.Search().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "1",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "hnatao", "age": 21, "score": 80 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "5",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "guofucheng", "age": 20, "score": 0 }
    }
]

查找大于 21 岁的所有用户信息

q := elastic.NewRangeQuery("age").Gte("21")
rst, _ := client.Search().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "1",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "hnatao", "age": 21, "score": 80 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "2",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "lqt", "age": 22, "score": 90 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "3",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "liudehua", "age": 23, "score": 85 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "4",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "zhangxueyou", "age": 24, "score": 86 }
    }
]

查找有得分记录的用户

q := elastic.NewExistsQuery("score")
rst, _ := client.Search().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "1",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "hnatao", "age": 21, "score": 80 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "2",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "lqt", "age": 22, "score": 90 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "3",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "liudehua", "age": 23, "score": 85 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "4",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "zhangxueyou", "age": 24, "score": 86 }
    },
    {
        "_score": 1,
        "_index": "user",
        "_type": "_doc",
        "_id": "5",
        "_seq_no": null,
        "_primary_term": null,
        "_source": { "name": "guofucheng", "age": 20, "score": 0 }
    }
]

查找没有得分记录的用户

q := elastic.NewBoolQuery().MustNot(elastic.NewExistsQuery("score"))
rst, _ := client.Search().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[]

20 岁用户总人数

q := elastic.NewTermQuery("age", "20")
rst, _ := client.Count().Index("user").Query(q).Do(ctx)
buf, _ := json.Marshal(rst)
fmt.Println(string(buf))

返回

数字:1

用户的平均人数

q := elastic.NewAvgAggregation().Field("age")
rst, _ := client.Search().Index("user").Aggregation("avg_age", q).Size(0).Do(ctx)
fmt.Println(string(rst.Aggregations["avg_age"]))

返回

{ "value": 22.0 }

查找年龄最小的用户

rst, _ := client.Search().Index("user").Sort("age", true).Size(1).Do(ctx)
buf, _ := json.Marshal(rst.Hits.Hits)
fmt.Println(string(buf))

返回

[
    {
        "_index": "user",
        "_type": "_doc",
        "_id": "5",
        "_seq_no": null,
        "_primary_term": null,
        "sort": [20],
        "_source": { "name": "guofucheng", "age": 20, "score": 0 }
    }
]

统计年龄的各个维度

agg := elastic.NewStatsAggregation().Field("age")
rst, _ := client.Search().Index("user").Aggregation("stats_age", agg).Do(ctx)
buf, _ := rst.Aggregations["stats_age"].MarshalJSON()
fmt.Println(string(buf))

返回

{
    "count": 5,
    "min": 20.0,
    "max": 24.0,
    "avg": 22.0,
    "sum": 110.0
}

统计年龄占比百分位

agg := elastic.NewPercentilesAggregation().Field("age")
rst, _ := client.Search().Index("user").Aggregation("stats_age", agg).Do(ctx)
buf, _ := rst.Aggregations["stats_age"].MarshalJSON()
fmt.Println(string(buf))

返回

{
    "values": {
        "1.0": 20.0,
        "5.0": 20.0,
        "25.0": 20.75,
        "50.0": 22.0,
        "75.0": 23.25,
        "95.0": 24.0,
        "99.0": 24.0
    }
}

查询每个年龄的平均分数,并按年龄从小到大排序

agg := elastic.NewTermsAggregation().Field("age").
    SubAggregation("avg_score", elastic.NewAvgAggregation().Field("score")).OrderByKeyAsc()
rst, _ := client.Search().Index("user").Aggregation("stats_age", agg).Do(ctx)
buf, _ := rst.Aggregations["stats_age"].MarshalJSON()
fmt.Println(string(buf))

返回

{
    "doc_count_error_upper_bound": 0,
    "sum_other_doc_count": 0,
    "buckets": [
        { "key": 20, "doc_count": 1, "avg_score": { "value": 0.0 } },
        { "key": 21, "doc_count": 2, "avg_score": { "value": 85.0 } },
        { "key": 22, "doc_count": 2, "avg_score": { "value": 85.5 } }
    ]
}

查询每个年龄的平均分数,并按平均分数从大到小排序

agg := elastic.NewTermsAggregation().Field("age").
    SubAggregation("avg_score", elastic.NewAvgAggregation().Field("score")).OrderByAggregation("avg_score", false)
rst, _ := client.Search().Index("user").Aggregation("stats_age", agg).Do(ctx)
buf, _ := rst.Aggregations["stats_age"].MarshalJSON()
fmt.Println(string(buf))

返回

{
    "doc_count_error_upper_bound": 0,
    "sum_other_doc_count": 0,
    "buckets": [
        { "key": 22, "doc_count": 2, "avg_score": { "value": 85.5 } },
        { "key": 21, "doc_count": 2, "avg_score": { "value": 85.0 } },
        { "key": 20, "doc_count": 1, "avg_score": { "value": 0.0 } }
    ]
}

到此,关于“elasticsearch文档操作的方法有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

原创文章,作者:3628473679,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/225653.html

(0)
上一篇 2022年1月8日 04:09
下一篇 2022年1月8日 04:09

相关推荐

发表回复

登录后才能评论