开年!5 款令人惊艳的开源项目「GitHub 热点速览」

  • 本文目录
    • 1. 热搜项目
      • 1.1 新型的 Git 客户端:gitbutler
      • 1.2 开源 AI 可穿戴设备:ADeus
      • 1.3 JavaScript 低延迟运行时:llrt
      • 1.4 迷你 Python 项目集合:python-mini-project
      • 1.5 开源的 AI 编程助手:continue
    • 2. HelloGitHub 热评
      • 2.1 开源的邮件列表和营销平台:listmonk
      • 2.2 C 语言写的极简神经网络库:genann
    • 3. 往期回顾

1. GitHub 热搜项目

1.1 新型的 Git 客户端:gitbutler

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:TypeScriptStar:6.9k周增长:6.3k

这是由 GitHub 联合创始人、《Pro Git》的作者 Scott Chacon 开源的 Git 客户端。它采用 Tauri/Rust/Svelte 构建,拥有较高的颜值。用户可以将多个分支上的改动,通过拖拽的方式快速地聚合到一个独立分支上,实现灵活地跨分支操作。目前仅支持 macOS 和 Linux 平台,Windows 版本还在开发中。

GitHub 地址→https://github.com/gitbutlerapp/gitbutler

1.2 开源 AI 可穿戴设备:ADeus

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:TypeScriptStar:1.8k周增长:1k

这是一款开源的 AI 可穿戴设备,相当于一个便携的 AI 助手。目前它的制作成本只有 100 美元,未来可能会更低。支持记录和处理你的个人数据,随时随地通过语音和你的个人 AI 进行聊天和问答,真正的个性化个人 AI。

GitHub 地址→https://github.com/adamcohenhillel/ADeus

1.3 JavaScript 低延迟运行时:llrt

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:JavaScriptStar:6.5k周增长:3.3k

这是由亚马逊开源的一种轻量级 JavaScript 运行时,它基于 QuickJS 和 Rust 语言构建,在节省内存和启动速度方面表现优异。与在 AWS Lambda 上运行的其他 JavaScript 运行时相比,LLRT 的启动速度提高了 10 倍以上,成本降低了 2 倍。

GitHub 地址→https://github.com/awslabs/llrt

1.4 迷你 Python 项目集合:python-mini-project

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:PythonStar:1.6k周增长:500

该项目包含了一系列迷你的 Python 小项目,并提供了简单的 Python 项目模板,帮助初学者开发出自己第一个 Python 程序。

GitHub 地址→https://github.com/ndleah/python-mini-project

1.5 开源的 AI 编程助手:continue

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:TypeScriptStar:7.4k周增长:500

这是一个支持 VSCode 和 JetBrains 的开源 AI 编程助手,可以接入 OpenAI、GPT-4、Gemini、CodeLlama 等多种不同的大语言模型。

GitHub 地址→https://github.com/continuedev/continue

2. HelloGitHub 热评

在这个章节,将会分享下本周 HelloGitHub 网站上的热门开源项目,欢迎与我们分享你上手这些开源项目后的使用体验。

2.1 开源的邮件列表和营销平台:listmonk

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:Go

这是一个开箱即用的邮件营销平台,可以帮助你管理邮件订阅者、创建和发送邮件、分析营销数据。可查看邮件阅读率、链接点击率等,支持自托管适用于个人和企业。

项目详情→https://hellogithub.com/repository/8c2b582b4ad44c1d9d140c63e33f32b3

2.2 C 语言写的极简神经网络库:genann

开年!5 款令人惊艳的开源项目「GitHub 热点速览」

主语言:C

这是一个轻量、无依赖、单文件的 C 语言神经网络库,内含丰富的示例和测试。代码简洁易读,适合作为初学者学习神经网络的入门项目。

#include "genann.h"

/* Not shown, loading your training and test data. */
double **training_data_input, **training_data_output, **test_data_input;

/* New network with 2 inputs,
 * 1 hidden layer of 3 neurons each,
 * and 2 outputs. */
genann *ann = genann_init(2, 1, 3, 2);

/* Learn on the training set. */
for (i = 0; i < 300; ++i) {
    for (j = 0; j < 100; ++j)
        genann_train(ann, training_data_input[j], training_data_output[j], 0.1);
}

/* Run the network and see what it predicts. */
double const *prediction = genann_run(ann, test_data_input[0]);
printf("Output for the first test data point is: %f, %fn", prediction[0], prediction[1]);

genann_free(ann);

项目详情→https://hellogithub.com/repository/f9cdb751f3e54970ab060b347dfd7da4

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/312091.html

(0)
上一篇 2024年2月20日 15:44
下一篇 2024年2月20日 15:47

相关推荐

发表回复

登录后才能评论