项目简介
本项目通过构建并训练CNN网络来进行飞机识别
下载安装命令
## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle
## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu
数据介绍
本项目共有7897张图像,其中训练集5897张,测试集2000张图像,每幅图像的大小为32*32
网络构建
本项目网络结构如下图所示:
如上图所示,给定32 * 32 * 3的测试图像作为输入,经过本项目定义的卷积神经网络后输出为1*2的向量,分别代表该图像是否为飞机的概率
In[1]
# 查看当前挂载的数据集目录
!ls /home/aistudio/data/data1589
testdata.npy testlabel.npy traindata.npy trainlabel.npy
In[3]
# 导入依赖包
import sys
import numpy as np
# import lr_utils
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
%matplotlib inline
In[31]
# 加载数据, 并展示一张,由于数据图片较小,所以显示出来比较模糊
train_set_x_orig=np.load("/home/aistudio/data/data1589/traindata.npy")
train_set_y=np.load("/home/aistudio/data/data1589/trainlabel.npy")
test_set_x_orig=np.load("/home/aistudio/data/data1589/testdata.npy")
test_set_y=np.load("/home/aistudio/data/data1589/testlabel.npy")
plt.imshow(train_set_x_orig[2])
plt.show()
In[5]
# 输出数据集的信息
m_train=train_set_x_orig.shape[0]
m_test=test_set_x_orig.shape[0]
num_px=train_set_x_orig.shape[1]
print ("训练样本数: m_train = " + str(m_train))
print ("测试样本数: m_test = " + str(m_test))
print ("图片高度/宽度: num_px = " + str(num_px))
print ("图片大小: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
训练样本数: m_train = 5897 测试样本数: m_test = 2000 图片高度/宽度: num_px = 32 图片大小: (32, 32, 3) train_set_x shape: (5897, 32, 32, 3) train_set_y shape: (5897, 1) test_set_x shape: (2000, 32, 32, 3) test_set_y shape: (2000, 1)
In[6]
###因为paddlepaddle认识的数据是3*l*h的,所以需要进行数据格式转换
train_set_x = np.array(train_set_x_orig).reshape(m_train, 3, num_px, num_px).astype(np.float32)
train_set_y = np.array(train_set_y).reshape(m_train, 1).astype(np.float32)
test_set_x = np.array(test_set_x_orig).reshape(m_test, 3, num_px, num_px).astype(np.float32)
test_set_y = np.array(test_set_y).reshape(m_test, 1).astype(np.float32)
In[7]
#归一化
train_set_x=train_set_x/ 255.0 * 2.0 - 1.0
test_set_x=test_set_x/ 255.0 * 2.0 - 1.0
In[8]
# 读取训练数据或测试数据
def read_data(train_set_x,train_set_y,buffer_size):
def reader():
for i in range(buffer_size):
yield train_set_x[i,:], int(train_set_y[i])
return reader
In[9]
def convolutional_neural_network():
"""
定义卷积神经网络分类器:
输入的二维图像,经过两个卷积-池化层,使用以softmax为激活函数的全连接层作为输出层
Args:
img -- 输入的原始图像数据
Return:
predict -- 分类的结果
"""
img = fluid.layers.data(
name='img', shape =[3,32,32],dtype = 'float32')
#第一个卷积层
# hidden = fluid.nets.simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, pool_padding=0)
hidden=fluid.nets.simple_img_conv_pool(
input=img,
num_filters=50,
filter_size=10,
pool_size=5,
pool_stride=1,
pool_padding=0
)
#第二个卷积层
h2=fluid.nets.simple_img_conv_pool(
input=hidden,
num_filters=50,
filter_size=3,
pool_size=2,
pool_stride=1,
pool_padding=0
)
# predict = fluid.layers.fc(h2,size=1,act='sigmoid')
predict = fluid.layers.fc(h2,size=2,act='softmax')
return predict
In[10]
# 设置训练场所
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
In[11]
#配置网络结构
def train_func():
label = fluid.layers.data(name='label', shape = [1],dtype = 'int64')
predict = convolutional_neural_network()
# 损失函数,cross_entropy 函数内部使用交叉熵损失函数
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
return avg_cost
In[12]
def optimizer_func():
# 创建Momentum优化器,并设置学习率(learning_rate)、动量(momentum)
optimizer=fluid.optimizer.Momentum(learning_rate=0.001,momentum=0.5)
return optimizer
In[13]
feed_order = ['img', 'label'] #数据格式
params_dirname = "./DNN_model" #模型保存路径
In[14]
# 事件处理函数
from paddle.utils.plot import Ploter
from paddle.fluid.contrib.trainer import EndStepEvent
train_title = "Train cost"
test_title = "Test cost"
plot_cost = Ploter(train_title, test_title)
step = 0
def event_handler_plot(event):
global step
if isinstance(event, EndStepEvent):
if event.step % 2 == 0: # 若干个batch,记录cost
if event.metrics[0] < 10:
plot_cost.append(train_title, step, event.metrics[0])
plot_cost.plot()
if event.step % 20 == 0: # 若干个batch,记录cost
test_metrics = trainer.test(
reader=test_reader, feed_order=feed_order)
if test_metrics[0] < 10:
plot_cost.append(test_title, step, test_metrics[0])
plot_cost.plot()
# if test_metrics[0] < 1.0:
# # 如果准确率达到阈值,则停止训练
# print('loss is less than 10.0, stop')
# trainer.stop()
# 将参数存储,用于预测使用
if params_dirname is not None:
trainer.save_params(params_dirname )
step += 1
In[15]
#训练所用到的具体数据
BATCH_SIZE=16
# 设置训练reader
train_reader = paddle.batch(
paddle.reader.shuffle(
read_data(train_set_x,train_set_y,buffer_size=209),
buf_size=50),
batch_size=BATCH_SIZE)
# 设置测试reader
test_reader = paddle.batch(
paddle.reader.shuffle(
read_data(test_set_x,test_set_y,buffer_size=50),
buf_size=20),
batch_size=BATCH_SIZE)
In[16]
#创建训练器
from paddle.fluid.contrib.trainer import Trainer
trainer= Trainer(
train_func= train_func,
place= place,
optimizer_func= optimizer_func )
In[23]
#开始训练
trainer.train(
reader=train_reader,
num_epochs=30 ,
event_handler=event_handler_plot,
feed_order= feed_order )
<Figure size 432x288 with 0 Axes>
In[24]
from paddle.fluid.contrib.inferencer import Inferencer
inferencer = Inferencer(
infer_func=convolutional_neural_network, param_path=params_dirname, place=place)
In[25]
#取出一个 mini-batch
for mini_batch in test_reader():
# 转化为 numpy 的 ndarray 结构,并且设置数据类型
test_x = np.array([data[0] for data in mini_batch]).astype("float32")
test_y = np.array([data[1] for data in mini_batch]).astype("int64")
# 真实进行预测
mini_batch_result = inferencer.infer({'img': test_x})
result=(mini_batch_result[0][:,-1]>0.5)+0 #True or False 转0/1,直接后面+0即可
# 打印预测结果
# mini_batch_result = np.argsort(mini_batch_result) #找出可能性最大的列标,升序排列,
###经过分析,这是多分类问题会用到的函数,找出概率值最大的下标
# mini_batch_result = mini_batch_result[0][:, -1] #把这些列标拿出来
print('预测结果:%s'%result)
# 打印真实结果
label = np.array(test_y) # 转化为 label
print('真实结果:%s'%label)
break
预测结果:[1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1] 真实结果:[1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1]
In[26]
# 查看百分比
def right_ratio(right_counter, total):
ratio = float(right_counter)/total
return ratio
In[27]
# 评估函数 data_set 是一个reader
def evl(data_set):
total = 0 #操作的元素的总数
right_counter = 0 #正确的元素
pass_num = 0
# print(liruoyi)
for mini_batch in data_set():
pass_num += 1
#预测
test_x = np.array([data[0] for data in mini_batch]).astype("float32")
test_y = np.array([data[1] for data in mini_batch]).astype("int64")
mini_batch_result = inferencer.infer({'img': test_x})
mini_batch_result=(mini_batch_result[0][:,-1]>0.5)+0 #True or False 转0/1,直接后面+0即可
#预测的结果
# mini_batch_result = np.argsort(mini_batch_result) #找出可能性最大的列标,升序排列
# mini_batch_result = mini_batch_result[0][:, -1]+0 #把这些列标拿出来
#print('预测结果:%s'%result)
label = np.array(test_y) # 转化为 label
# print('真实结果:%s'%label)
#计数
label_len = len(label)
total += label_len
for i in range(label_len):
if mini_batch_result[i] == label[i]:
right_counter += 1
ratio = right_ratio(right_counter, total)
return ratio
In[28]
ratio = evl(train_reader)
print('训练数据的正确率 %0.2f%%'%(ratio*100))
ratio = evl(test_reader)
print('预测数据的正确率 %0.2f%%'%(ratio*100))
训练数据的正确率 99.52% 预测数据的正确率 68.00%
使用AI Studio一键上手实践项目吧:https://aistudio.baidu.com/aistudio/projectdetail/169475
下载安装命令
## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle
## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu
>> 访问 PaddlePaddle 官网,了解更多相关内容。
{{o.name}}
{{m.name}}
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/opensource/72264.html