处理前的集合:[m,k,l,a, 1,3,5,7]
处理后的集合:[m, k, l, a, 1, 3, 5, 7]
Process finished with exit code 0
归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
案例一:求 Integer
集合的元素之和、乘积和最大值。
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional<Integer> sum = list.stream().reduce(Integer::sum);
// 求和方式2
Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
// 求和方式3
Integer sum3 = list.stream().reduce(0, Integer::sum);
// 求乘积
Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
// 求最大值方式1
Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
// 求最大值写法2
Integer max2 = list.stream().reduce(1, Integer::max);
System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
System.out.println("list求积:" + product.get());
System.out.println("list求和:" + max.get() + "," + max2);
}
}
输出结果:
list求和:29,29,29
list求积:2112
list求和:11,11
Process finished with exit code 0
归集(toList/toSet/toMap)
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。 toList
、 toSet
和 toMap
比较常用,另外还有 toCollection
、 toConcurrentMap
等复杂一些的用法。
下面用一个案例演示 toList
、 toSet
和 toMap
:
public class Person {
private String name; // 姓名
private int salary; // 薪资
private int age; // 年龄
private String sex; //性别
private String area; // 地区
// 构造方法
public Person(String name, int salary, int age,String sex,String area) {
this.name = name;
this.salary = salary;
this.age = age;
this.sex = sex;
this.area = area;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getSalary() {
return salary;
}
public void setSalary(int salary) {
this.salary = salary;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getSex() {
return sex;
}
public void setSex(String sex) {
this.sex = sex;
}
public String getArea() {
return area;
}
public void setArea(String area) {
this.area = area;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '/'' +
", salary=" + salary +
", age=" + age +
", sex='" + sex + '/'' +
", area='" + area + '/'' +
'}';
}
}
public class StreamTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
.collect(Collectors.toMap(Person::getName, p -> p));
System.out.println("toList:" + listNew);
System.out.println("toSet:" + set);
System.out.println("toMap:" + map);
}
}
输出结果:
toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=Person{name='Tom', salary=8900, age=23, sex='male', area='New York'}, Anni=Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}}
Process finished with exit code 0
统计(count/averaging)
Collectors
提供了一系列用于数据统计的静态方法:
-
计数:
count
-
平均值:
averagingInt
、averagingLong
、averagingDouble
-
最值:
maxBy
、minBy
-
求和:
summingInt
、summingLong
、summingDouble
- 统计以上所有:
summarizingInt
、summarizingLong
、summarizingDouble
案例:统计员工人数、平均工资、工资总额、最高工资。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 求总数
long count = personList.size();
// 求平均工资
Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
// 求最高工资
Optional<Integer> max = personList.stream().map(Person::getSalary).max(Integer::compare);
// 求工资之和
int sum = personList.stream().mapToInt(Person::getSalary).sum();
// 一次性统计所有信息
DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
System.out.println("员工总数:" + count);
System.out.println("员工平均工资:" + average);
System.out.println("员工最高工资:" + max.get());
System.out.println("员工工资总和:" + sum);
System.out.println("员工工资所有统计:" + collect);
}
}
输出结果:
员工总数:3
员工平均工资:7900.0
员工最高工资:8900
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000, min=7000.000000, average=7900.000000, max=8900.000000}
Process finished with exit code 0
分组(partitioningBy/groupingBy)
-
分区:将
stream
按条件分为两个Map
,比如员工按薪资是否高于8000分为两部分。 - 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "Washington"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "New York"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
// 将员工按薪资是否高于8000分组
Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
// 将员工按性别分组
Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
// 将员工先按性别分组,再按地区分组
Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
System.out.println("员工按薪资是否大于8000分组情况:" + part);
System.out.println("员工按性别分组情况:" + group);
System.out.println("员工按性别、地区:" + group2);
}
}
输出结果:
员工按薪资是否大于8000分组情况:{false=[Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}, Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}], true=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}]}
员工按性别分组情况:{female=[Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}], male=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}]}
员工按性别、地区:{female={New York=[Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}]}, male={Washington=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}]}}
Process finished with exit code 0
接合(joining)
joining
可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
String names = personList.stream().map(Person::getName).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);
}
}
输出结果:
所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C
Process finished with exit code 0
排序(sorted)
sorted
,中间操作。有两种排序:
-
sorted()
:自然排序,流中元素需实现Comparable
接口 sorted(Comparator com)
:Comparator
排序器自定义排序
案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());
System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}
}
输出结果:
按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
Process finished with exit code 0
提取/组合
流也可以进行合并、去重、限制、跳过等操作。
public class StreamTest {
public static void main(String[] args) {
String[] arr1 = { "a", "b", "c", "d" };
String[] arr2 = { "d", "e", "f", "g" };
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
// concat:合并两个流 distinct:去重
List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
// limit:限制从流中获得前n个数据
List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
// skip:跳过前n个数据
List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
System.out.println("流合并:" + newList);
System.out.println("limit:" + collect);
System.out.println("skip:" + collect2);
}
}
输出结果:
流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]
Process finished with exit code 0
分页操作
stream api 的强大之处还不仅仅是对集合进行各种组合操作,还支持分页操作。
例如,将如下的数组从小到大进行排序,排序完成之后,从第1行开始,查询10条数据出来,操作如下:
//需要查询的数据
List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5, 10, 6, 20, 30, 40, 50, 60, 100);
List<Integer> dataList = numbers.stream().sorted(Integer::compareTo).skip(0).limit(10).collect(Collectors.toList());
System.out.println(dataList.toString());
输出结果:
[2, 2, 3, 3, 3, 5, 6, 7, 10, 20]
Process finished with exit code 0
并行操作
所谓并行,指的是多个任务在同一时间点发生,并由不同的cpu进行处理,不互相抢占资源;而并发,指的是多个任务在同一时间点内同时发生了,但由同一个cpu进行处理,互相抢占资源。
stream api 的并行操作和串行操作,只有一个方法区别,其他都一样,例如下面我们使用parallelStream来输出空字符串的数量:
List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd", "", "jkl");
// 采用并行计算方法,获取空字符串的数量
long count = strings.parallelStream().filter(String::isEmpty).count();
System.out.println(count);
在实际使用的时候, 并行操作
不一定比 串行操作
快!对于简单操作,数量非常大,同时服务器是多核的话,建议使用Stream并行!反之,采用串行操作更可靠!
集合转Map操作
在实际的开发过程中,还有一个使用最频繁的操作就是,将集合元素中某个主键字段作为key,元素作为value,来实现集合转map的需求,这种需求在数据组装方面使用的非常多。
public static void main(String[] args) {
List<Person> personList = new ArrayList<>();
personList.add(new Person("Tom",7000,25,"male","安徽"));
personList.add(new Person("Jack",8000,30,"female","北京"));
personList.add(new Person("Lucy",9000,40,"male","上海"));
personList.add(new Person("Airs",10000,40,"female","深圳"));
Map<Integer, Person> collect = personList.stream().collect(Collectors.toMap(Person::getAge, v -> v, (k1, k2) -> k1));
System.out.println(collect);
}
输出结果:
{40=Person{name='Lucy', salary=9000, age=40, sex='male', area='上海'}, 25=Person{name='Tom', salary=7000, age=25, sex='male', area='安徽'}, 30=Person{name='Jack', salary=8000, age=30, sex='female', area='北京'}}
Process finished with exit code 0
打开 Collectors.toMap
方法源码,一起来看看。
public static <T, K, U>
Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction) {
return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
}
从参数表可以看出:
-
第一个参数:表示 key
-
第二个参数:表示 value
- 第三个参数:表示某种规则
上文中的 Collectors.toMap(Person::getAge, v -> v, (k1,k2) -> k1)
,表达的意思就是将 age
的内容作为 key
, v -> v
是表示将元素 person
作为 value
,其中 (k1,k2) -> k1
表示如果存在相同的 key
,将第一个匹配的元素作为内容,第二个舍弃!
总结
我们总是喜欢瞻仰大厂的大神们,但实际上大神也不过凡人,与菜鸟程序员相比,也就多花了几分心思,如果你再不努力,差距也只会越来越大。
面试题多多少少对于你接下来所要做的事肯定有点帮助,但我更希望你能透过面试题去总结自己的不足,以提高自己核心技术竞争力。每一次面试经历都是对你技术的扫盲,面试后的复盘总结效果是极好的!如果你需要这份完整版的面试真题笔记,只需你多多支持我这篇文章。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/125953.html