纯净Ubuntu16安装CUDA(9.1)和cuDNN

欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

本篇概览

  • 自己有一台2015年的联想笔记本,显卡是GTX950M,已安装ubuntu 16.04 LTS桌面版,为了使用其GPU完成deeplearning4j的训练工作,自己动手安装了CUDA和cuDNN,在此将整个过程记录下来,以备将来参考,整个安装过程分为以下几步:
  1. 准备工作
  2. 安装Nvidia驱动
  3. 安装CUDA
  4. 安装cuDNN

特别问题说明

  • 按照一般步骤,在安装完Nvidia显卡驱动后,会提示对应的CUDA版本,接下来按照提示的版本安装CUDA,例如我这里提示的是11.2,正常情况下,我应该安装11.2版本的CUDA

  • 但是我选择9.1版本就行安装,因为之前的开发中发现deeplearning4j使用了11.2的SDK后,启动应用会有ClassNotFound的错误,此问题至今未修复(惭愧,欣宸水平如此之低…),因此,我在Nvidia驱动提示11.2版本的情况下,依然安装了9.1版本,后来在此环境运行deeplearning4j应用一切正常

  • 如果您没有我这类问题,完全可以按照驱动指定的版本来安装CUDA,具体的操作步骤稍后会详细说到;

准备工作

  • 接下来的操作,除了在网页下载,其余都是ssh远程连接到ubuntu机器操作的,ssh登录的帐号为普通帐号,并非root

  • 如果已有驱动,请先删除:

sudo apt-get remove --purge nvidia*
  • 禁用nouveau驱动(很重要),用vi打开文件<font color=”blue”>/etc/modprobe.d/blacklist.conf</font>,在尾部增加以下内容,然后保存退出:
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off
  • 关闭nouveau:
echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
  • 更新initramfs:
update-initramfs -u
  • 执行reboot重启电脑

  • 重启后,执行以下命令,应该不会有任何输出,证明nouveau已经禁用:

lsmod|grep nouveau
  • 获取Kernel source:
sudo apt-get install linux-source
  • 安装过程中显示信息如下图:

在这里插入图片描述

  • 根据上图红框中的信息,可知内核版本号为<font color=”blue”></font>,于是执行以下命令:
sudo apt-get install linux-headers-4.4.0-210-generic

下载和安装Nvidia驱动

在这里插入图片描述

  • 点击上图<font color=”blue”>搜索</font>按钮后,进入下图页面,点击下载:

在这里插入图片描述

  • 下载得到的文件名为<font color=”blue”>NVIDIA-Linux-x86_64-460.84.run</font>

  • 关闭图形页面:

sudo service lightdm stop
  • 给驱动文件增加可执行权限:
sudo chmod a+x NVIDIA-Linux-x86_64-460.84.run
  • 开始安装:
sudo ./NVIDIA-Linux-x86_64-460.84.run -no-x-check -no-nouveau-check -no-opengl-files
  • 遇到下图,选择红框:

在这里插入图片描述

  • 遇到下图,直接回车: 在这里插入图片描述

  • 恢复图形页面:

sudo service lightdm start
  • 执行命令<font color=”blue”>nvidia-smi</font>,如果驱动安装成功,会显示以下内容:
will@lenovo:~/temp/202106/20$ nvidia-smi
Sun Jun 20 09:02:11 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.84       Driver Version: 460.84       CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 950M    Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   41C    P0    N/A /  N/A |      0MiB /  4046MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
  • 从上述内容可见<font color=”blue”>CUDA Version: 11.2</font>表示该驱动对应的CUDA版本应该是<font color=”red”>11.2</font>,正如前面所说,我这边遇到了问题,因此接下来会安装9.1版本,但是您可以选择安装<font color=”red”>11.2</font>

安装CUDA

在这里插入图片描述

  • 如下图,下载Linux版本:

在这里插入图片描述

  • 继续选择<font color=”blue”>x86_64</font>:

在这里插入图片描述

  • 选择具体的Linux版本及其版本号:

在这里插入图片描述

  • 要下载的东西不少,一个安装程序和三个补丁:

在这里插入图片描述

  • 上述四个文件的下载地址整理如下:
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/local_installers/cuda_9.1.85_387.26_linux.run?P0Ntu_6NLtuuEMm6fJRk1W5vl4KM7oaT1oFW870zKJ-zDw2ckKntFLOE6klRJfw2CmTa8z3Q390_6urlgc6LqjoqlIFW9gvfvDCusnINYplLaw1u8lRY8R4oVNtpNzaXU4BQcHjvdb6c6rjq20dktCcRd4640woXt1yHmD95v1Du7wdBBXq2eOY

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/1/cuda_9.1.85.1_linux.run?yeXf_7wIGlHAUw--E_YVLQZRgXv0x2i043woJVY-ydXU5Kyhc-eYQf5JmL-4mvYmlvPYCEc5RhT2sDWscX20CJbdOwpkt30kWb9vx8E4oIlajDQ3MVPvXdiKKsIOBUx-h0q0N0jSkNn80VMhW-nk8jwvRY_e6MuFzqWBaPk

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/2/cuda_9.1.85.2_linux.run?5jGZxNigaOJkaaPbMagjhSW7ebQvYGyYoqe2vBxZ1eV8qp2BzXJLxIPgAo11UgWhORirQkdJGq5b8eFh4aShBVUTmuPaasvRiMCKDZw5yjjIobGQrCEyU-LFO59AbrRER57Mxa0T1Sc97fC80IOZq8Ox2repjn7A3oYVgd8

https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/3/cuda_9.1.85.3_linux.run?CxWimJTC-XROYihig-UZmH62odbJInf1fmxTZ_bsW1nQ0Zz5cL5r8qLmlMR_1j2rVhk3j8Z5lS6dpArt8frjGHH2MeVn5TefMoclam8udm-RSMMmqHXYE66hHN2D0drVEdtCwe8ZrEIYb2rpucaz9svCFE8Z319mge4Ju94
  • 下载完毕后,执行命令<font color=”blue”>chmod a+x *.run</font>为上述四个文件增加可执行权限

  • 安装CUDA:

sudo sh cuda_9.1.85_387.26_linux.run
  • 遇到license时,像是用vi工具那样,输入”:”,再输入”q”回车,就能跳过license阅读,执行真正的安装操作了:

在这里插入图片描述

  • 接下来是一系列提问,每一个提问的回答如下图,千万注意红框中的问题一定要选择<font color=”red”>n</font>:

在这里插入图片描述

  • 安装完成后输出以下内容:
Installing the CUDA Toolkit in /usr/local/cuda-9.1 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Missing recommended library: libGL.so

Installing the CUDA Samples in /home/will ...
Copying samples to /home/will/NVIDIA_CUDA-9.1_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-9.1
Samples:  Installed in /home/will, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-9.1/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-9.1/lib64, or, add /usr/local/cuda-9.1/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.1/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.1/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_13425.log
  • 打开文件<font color=”blue”>~/.bashrc</font>,在尾部增加以下两行(LD_LIBRARY_PATH如果已经存在,请参考PATH的写法改成追加):
export PATH=/usr/local/cuda-9.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64
  • 执行命令<font color=”blue”>source ~/.bashrc</font>使配置生效

  • 执行命令<font color=”blue”>su -</font>切换到root帐号,执行以下命令(不要用sudo,而是切到root帐号):

sudo echo "/usr/local/cuda-9.1/lib64" >> /etc/ld.so.conf
  • 再以root身份执行以下命令:
ldconfig
  • 执行命令<font color=”blue”>exit</font>退出root身份,现在又是普通帐号的身份了

  • 执行命令<font color=”blue”>nvcc -V</font>检查CUDA版本,注意参数V是大写:

will@lenovo:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
  • 安装第一个补丁:
sudo sh cuda_9.1.85.1_linux.run
  • 安装第二个补丁:
sudo sh cuda_9.1.85_387.26_linux.run
  • 安装第三个补丁:
sudo sh cuda_9.1.85_387.26_linux.run

安装cuDNN

在这里插入图片描述

  • 按提示登录,如果没有帐号请注册一个,登录后进入下载页面,需要点击下图红框位置才有能见到老版本:

在这里插入图片描述

  • 选择与CUDA匹配的版本:

在这里插入图片描述

  • 下载后解压,得到文件夹<font color=”blue”>cuda</font>,然后执行以下命令:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
  • 执行检查确认的命令<font color=”blue”>cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2</font>,如果安装顺利会有以下输出:
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 1
#define CUDNN_PATCHLEVEL 3
--
#define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"
  • 至此,Ubuntu16安装CUDA(9.1)和cuDNN已经完成了,希望能给您一些参考。

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界… https://github.com/zq2599/blog_demos

{{o.name}}


{{m.name}}

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/173982.html

(0)
上一篇 2021年9月28日 19:39
下一篇 2021年9月28日 19:39

相关推荐

发表回复

登录后才能评论