Kafka consumer是单线程的设计,这个其实不准确,从 Kafka 0.10.1.0 版本开始,KafkaConsumer 就变为了双线程的设计,即用户主线程和心跳线程。
所谓用户主线程,就是你启动 Consumer 应用程序 main 方法的那个线程,而新引入的心跳线程(Heartbeat Thread)只负责定期给对应的 Broker 机器发送心跳请求,以标识消费者应用的存活性(liveness)。引入这个心跳线程还有一个目的,那就是期望它能将心跳频率与主线程调用 KafkaConsumer.poll 方法的频率分开,从而解耦真实的消息处理逻辑与消费者组成员存活性管理。
KafkaConsumer 类不是线程安全的 (thread-safe)。所有的网络 I/O 处理都是发生在用户主线程中,因此,你在使用过程中必须要确保线程安全。简单来说,就是你不能在多个线程中共享同一个 KafkaConsumer 实例,否则程序会抛出 ConcurrentModificationException 异常。
KafkaConsumer 中有个方法是例外的,它就是wakeup(),你可以在其他线程中安全地调用**KafkaConsumer.wakeup()**来唤醒 Consumer。
鉴于 KafkaConsumer 不是线程安全的事实,我们能够制定两套多线程方案。
1.消费者程序启动多个线程,每个线程维护专属的 KafkaConsumer 实例,负责完整的消息获取、消息处理流程。如下图所示:
优点:
- 实现起来简单,因为它比较符合目前我们使用 Consumer API 的习惯。我们在写代码的时候,使用多个线程并在每个线程中创建专属的 KafkaConsumer 实例就可以了。
- 多个线程之间彼此没有任何交互,省去了很多保障线程安全方面的开销。
- 由于每个线程使用专属的 KafkaConsumer 实例来执行消息获取和消息处理逻辑,因此,Kafka 主题中的每个分区都能保证只被一个线程处理,这样就很容易实现分区内的消息消费顺序。这对在乎事件先后顺序的应用场景来说,是非常重要的优势。
缺点:
- 每个线程都维护自己的 KafkaConsumer 实例,必然会占用更多的系统资源,比如内存、TCP 连接等。在资源紧张的系统环境中,方案 1 的这个劣势会表现得更加明显。
- 这个方案能使用的线程数受限于 Consumer 订阅主题的总分区数。我们知道,在一个消费者组中,每个订阅分区都只能被组内的一个消费者实例所消费。假设一个消费者组订阅了 100 个分区,那么方案 1 最多只能扩展到 100 个线程,多余的线程无法分配到任何分区,只会白白消耗系统资源。当然了,这种扩展性方面的局限可以被多机架构所缓解。除了在一台机器上启用 100 个线程消费数据,我们也可以选择在 100 台机器上分别创建 1 个线程,效果是一样的。因此,如果你的机器资源很丰富,这个劣势就不足为虑了。
- 每个线程完整地执行消息获取和消息处理逻辑。一旦消息处理逻辑很重,造成消息处理速度慢,就很容易出现不必要的 Rebalance,从而引发整个消费者组的消费停滞。
2.消费者程序使用单或多线程获取消息,同时创建多个消费线程执行消息处理逻辑。获取消息的线程可以是一个,也可以是多个,每个线程维护专属的 KafkaConsumer 实例,处理消息则交由特定的线程池来做,从而实现消息获取与消息处理的真正解耦。具体架构如下图所示:
优点:1.将任务切分成了消息获取和消息处理两个部分,分别由不同的线程处理它们。比起方案 1,方案 2 的最大优势就在于它的高伸缩性,可以独立地调节消息获取的线程数,以及消息处理的线程数,而不必考虑两者之间是否相互影响。如果你的消费获取速度慢,那么增加消费获取的线程数即可;如果是消息的处理速度慢,那么增加 Worker 线程池线程数即可。
缺点:
- 它的实现难度要比方案 1 大得多,毕竟它有两组线程,你需要分别管理它们。
- 因为该方案将消息获取和消息处理分开了,也就是说获取某条消息的线程不是处理该消息的线程,因此无法保证分区内的消费顺序。举个例子,比如在某个分区中,消息 1 在消息 2 之前被保存,那么 Consumer 获取消息的顺序必然是消息 1 在前,消息 2 在后,但是,后面的 Worker 线程却有可能先处理消息 2,再处理消息 1,这就破坏了消息在分区中的顺序。还是那句话,如果你在意 Kafka 中消息的先后顺序,方案 2 的这个劣势是致命的。
- 方案 2 引入了多组线程,使得整个消息消费链路被拉长,最终导致正确位移提交会变得异常困难,结果就是可能会出现消息的重复消费。如果你在意这一点,那么我不推荐你使用方案 2。
方案一代码例子:
public class KafkaConsumerRunner implements Runnable { private final AtomicBoolean closed = new AtomicBoolean(false); private final KafkaConsumer consumer; public void run() { try { consumer.subscribe(Arrays.asList("topic")); while (!closed.get()) { ConsumerRecords records = consumer.poll(Duration.ofMillis(10000)); // 执行消息处理逻辑 } } catch (WakeupException e) { // Ignore exception if closing if (!closed.get()) throw e; } finally { consumer.close(); } } // Shutdown hook which can be called from a separate thread public void shutdown() { closed.set(true); consumer.wakeup(); }
方案二:
private final KafkaConsumer<String, String> consumer; private ExecutorService executors; ... private int workerNum = ...; executors = new ThreadPoolExecutor( workerNum, workerNum, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(1000), new ThreadPoolExecutor.CallerRunsPolicy()); ... while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1)); for (final ConsumerRecord record : records) { executors.submit(new Worker(record)); } } ..
原创文章,作者:端木书台,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/244626.html