二叉树
很久没写代码,指针为空要New赋值都不知道,还因为这个DE了好久的BUG T^T
ADT
普通二叉树
#include <iostream>
#include <string>
#include <queue>
#include <sstream>
#include <vector>
#include <deque>
#include <stack>
using namespace std;
char test;
/* 二叉表的结点定义 */
template<class ElemType>
struct BinaryTreeNode
{
ElemType data;
int visit;
BinaryTreeNode<ElemType> *LChild, *RChild;
BinaryTreeNode() : LChild(NULL), RChild(NULL),visit(0){} //构造函数1,用于构造根结点
BinaryTreeNode(const ElemType &item, BinaryTreeNode<ElemType> *Lptr = NULL, BinaryTreeNode<ElemType> *Rptr = NULL) //构造函数2,用于构造其他结点
//函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面
{
LChild = Lptr;
RChild = Rptr;
data = item;
visit=0;
}
ElemType getData(){ return data;} //取得结点中的数据
void SetLChild( BinaryTreeNode<ElemType> *link ){ LChild = link; } //修改结点的左孩子域
void SetRChild( BinaryTreeNode<ElemType> *link ){ RChild = link; } //修改结点的右孩子域
void SetData( ElemType value ){ data = value; } //修改结点的data域
bool isVisit(){ return visit; }
void setVisit(int n){ visit=n;return; }
BinaryTreeNode<ElemType> * GetLChild() const{ return LChild;} //获取左孩子结点
BinaryTreeNode<ElemType> * GetRChild() const{ return RChild;} //获取右孩子结点
// 返回结点孩子的情况,无子节点或都被访问过了则返回0,只有右子节点存在且未被访问则返回1,只有左节点存在且未被访问则返回2,都存在且未被访问则返回3
int childStatus(){
if((!LChild || LChild->visit) && (!RChild || RChild->visit)) return 0;
if((!LChild || LChild->visit) && (RChild && RChild->visit==0)) return 1;
if((!RChild || RChild->visit) && (LChild && LChild->visit==0)) return 2;
return 3;
}
};
// 节点层序序号
template<class ElemType>
struct numNode{
BinaryTreeNode<ElemType> *node;
int num;
};
//二叉树
template<class ElemType>
class BinaryTree{
private:
BinaryTreeNode<ElemType> *head; // 头指针
//比较两子树是否相等
bool checkEqual(const BinaryTreeNode<ElemType> *root1, const BinaryTreeNode<ElemType> *root2){
if(root1==NULL && root2==NULL){
return 1;
} else {
if(root1==NULL || root2==NULL) return 0;
else{
if(root1->data!=root2->data) return 0;
if(!checkEqual(root1->GetLChild(),root2->GetLChild())) return 0;
if(!checkEqual(root1->GetRChild(),root2->GetRChild())) return 0;
return 1;
}
}
return 1;
}
public:
//无参数的构造函数
BinaryTree():head(NULL){}
//带参数的构造函数
BinaryTree(const ElemType &item){head = new BinaryTreeNode<ElemType>(item);}
//生成树
BinaryTree(const BinaryTreeNode<ElemType> *p):head(p){};
//析构函数
~BinaryTree(){
if(head == NULL){
return;
}
BinaryTreeDestroy(head);
}
//销毁树
void BinaryTreeDestroy(BinaryTreeNode<ElemType> *T){
if(T==NULL) return;
BinaryTreeDestroy(T->LChild);
BinaryTreeDestroy(T->RChild);
delete T;
return ;
}
//返回二叉树结点的个数
int BinaryTreeSize( BinaryTreeNode<ElemType> *T ) const;
//判断二叉树是否为空
bool BinaryTreeisEmpty() const{return head == NULL;}
//获取根结点元素值
ElemType GetheadData() const{ return head->data;}
//设置根结点
void Sethead(BinaryTreeNode<ElemType> * p){
head=p;
}
//获取根结点
BinaryTreeNode<ElemType> * Gethead() const{ return head;}
//按值搜寻父节点,可处理根节点
void GetParent_Cursive(BinaryTreeNode<ElemType> * parent,ElemType &x,BinaryTreeNode<ElemType> * &result)const{
if(x==head->getData()){
result=NULL;
return ;
}
if(!parent) return;
if(parent->LChild && parent->LChild->data==x){
result=parent;
return;
}
if(parent->RChild && parent->RChild->data==x){
result=parent;
return;
}
GetParent_Cursive(parent->LChild,x,result);
GetParent_Cursive(parent->RChild,x,result);
return ;
}
// 前序遍历链表将重置访问标记visit
bool resetVisit( BinaryTreeNode<ElemType> *T, bool (*visit)(BinaryTreeNode<ElemType> *T, int &num), int &num ) const{
if(T==NULL) return 0;
T->setVisit(0);
if(!num) num=1;
this->PreOrderTraverse(T->LChild,visit,num);
this->PreOrderTraverse(T->RChild,visit,num);
return 1;
}
//前序遍历(递归)num的初始值为0,作用为控制输出格式(第1个结点前不加“,”)
bool PreOrderTraverse( BinaryTreeNode<ElemType> *T, bool (*visit)(BinaryTreeNode<ElemType> *T, int &num), int &num ) const{
if(T==NULL) return 0;
visit(T,num);
if(!num) num=1;
this->PreOrderTraverse(T->LChild,visit,num);
this->PreOrderTraverse(T->RChild,visit,num);
return 1;
}
//前序建立该树应输入的序列(带#)
bool PreOrderTraverse_Input( BinaryTreeNode<ElemType> *T, bool (*visit)(BinaryTreeNode<ElemType> *T, int &num), int &num ) const{
if(!T){
if(num) cout<<" ";
cout<<"#";
num=1;
return 1;
}
visit(T,num);
if(!num) num=1;
this->PreOrderTraverse_Input(T->LChild,visit,num);
this->PreOrderTraverse_Input(T->RChild,visit,num);
return 1;
}
//中序遍历(递归)
bool InOrderTraverse( BinaryTreeNode<ElemType> *T, bool (*visit)(BinaryTreeNode<ElemType> *T, int &num), int &num ) const{
if(T==NULL) return 0;
this->InOrderTraverse(T->LChild,visit,num);
visit(T,num);
if(!num) num=1;
this->InOrderTraverse(T->RChild,visit,num);
return 1;
}
//后序遍历(递归)
bool PostOrderTraverse( BinaryTreeNode<ElemType> *T, bool (*visit)(BinaryTreeNode<ElemType> *T, int &num), int &num ) const{
if(T==NULL) return 0;
this->PostOrderTraverse(T->LChild,visit,num);
this->PostOrderTraverse(T->RChild,visit,num);
visit(T,num);
if(!num) num=1;
return 1;
}
//层序遍历(递归)
bool LayerOrderTraverse(BinaryTreeNode<ElemType>*head,bool (*visit)(BinaryTreeNode<ElemType> *T,int &num),int &num) const{
queue<BinaryTreeNode<ElemType>*> Q;
Q.push(head);
while(!Q.empty()){
BinaryTreeNode<ElemType> *node=Q.front();
Q.pop();
if(node->LChild!=NULL) Q.push(node->LChild);
if(node->RChild!=NULL) Q.push(node->RChild);
visit(node,num);
if(num==0) num=1;
}
return 1;
}
// 先序序列创建存储结构的外壳函数
BinaryTreeNode<ElemType>* CreateBinaryTree_Bag(vector<ElemType> &x, ElemType &empty){
int c=0;
return CreateBinaryTree(x,empty,c);
}
//递归建立二叉树的存储结构-先序序列,empty表示分隔符
BinaryTreeNode<ElemType>* CreateBinaryTree(vector<ElemType> &x, ElemType &empty, int &n){
if(n>=x.size()) return NULL;
ElemType ch = x[n];
n++;
if (ch == empty){
return NULL;
}
else{
BinaryTreeNode<ElemType> *Node = new BinaryTreeNode<ElemType>;
Node->data = ch;
Node->LChild = CreateBinaryTree(x, empty, n);
Node->RChild = CreateBinaryTree(x, empty, n);
return Node;
}
}
// 层序遍历顺序建立二叉树
void CreateTree_Layer(vector<ElemType> &x,ElemType &empty){
int i=0;
queue<BinaryTreeNode<ElemType> **> Q;
BinaryTreeNode<ElemType> *Node = new BinaryTreeNode<ElemType>;
if(x[i]!=empty){
Node->SetData(x[i]);
Q.push(&(Node->LChild)); //推入指针的地址
Q.push(&(Node->RChild));
while(!Q.empty()){
i++;
if(i>=x.size()){ //留意超出数组的部分
*(Q.front())=NULL;
Q.pop();
continue;
}
if(x[i]!=empty){
*(Q.front())=new BinaryTreeNode<ElemType>;
(*(Q.front()))->data=x[i];
Q.push(&((*(Q.front()))->LChild)); //括号很严格
Q.push(&((*(Q.front()))->RChild));
Q.pop();
} else {
*(Q.front())=NULL;
Q.pop();
}
}
} else {
Node=NULL;
}
head=Node;
return ;
}
//先序递归查找结点中所有值为x的结点,并存入vector数组中
// 查找所有值为x的结点,保存在Vector中
void LocationAll_Cursive(BinaryTreeNode<ElemType>* root, const ElemType &x, vector<BinaryTreeNode<ElemType> *> &Vec )const{
if(!root) return;
if(root->getData()==x) Vec.push_back(root);
LocationAll_Cursive(root->GetLChild(),x,Vec);
LocationAll_Cursive(root->GetRChild(),x,Vec);
return;
}
void LocationALL(const ElemType &x, vector<BinaryTreeNode<ElemType> *> &Vec)const{
Vec.resize(0);
LocationAll_Cursive(head,x,Vec);
}
//先序递归查找结点中第一个值为x的,指针location为查找结果
void Location_Cursive( BinaryTreeNode<ElemType> * root, const ElemType &x, BinaryTreeNode<ElemType> * &location )const{
if(!root) return; //节点为空
if(root->data==x) {
location=root;
return;
};
Location_Cursive(root->GetLChild(),x,location);
if(location) return; //已经找到值即可退出
Location_Cursive(root->GetRChild(),x,location);
return ;
}
//对指针的引用"xxx * &p"可以启动和双指针一样的效果,实现指针地址的传递
void Location(const ElemType &x, BinaryTreeNode<ElemType> * &location)const{
location=NULL;
Location_Cursive(head,x,location);
}
void BinaryHeight_Cursive(BinaryTreeNode<ElemType> *root,int a,int &num) const{
if(a>num) num=a;
if(root){
BinaryHeight_Cursive(root->GetLChild(),a+1,num);
BinaryHeight_Cursive(root->GetRChild(),a+1,num);
}
return;
}
// 搜索以根节点的值为e的子树的高度
int GetBinaryTreeHeight(ElemType e) const{
BinaryTreeNode<string> *Loc=NULL;
int k=0;
Location(e,Loc);
if(Loc){
k++;
if(Loc->GetLChild())
BinaryHeight_Cursive(Loc->GetLChild(),1,k);
if(Loc->GetRChild())
BinaryHeight_Cursive(Loc->GetRChild(),1,k);
}
return k;
}
// flag=1右孩子,flag=0左孩子
void Location_Child( BinaryTreeNode<ElemType> *T, ElemType &x, int flag, BinaryTreeNode<ElemType> * &location ) const{
BinaryTreeNode<string> *Loc=NULL;
Location(x,Loc);
if(!Loc){
location=NULL;
return;
}
if(flag==1){
location=Loc->GetRChild();
} else{
location=Loc->GetLChild();
}
return;
}
// 删除以e为根节点的左(右)子树
bool ChildTreeDestroy(ElemType e, int flag){
BinaryTreeNode<ElemType> *Loc;
Location(e,Loc);
if(!Loc) return 0;
if(flag==1){
if(Loc->GetRChild()==NULL){ //销毁失败
return 0;
}
BinaryTreeDestroy(Loc->GetRChild());
Loc->SetRChild(NULL); //确保子节点为空
} else {
if(Loc->GetLChild()==NULL){
return 0;
}
BinaryTreeDestroy(Loc->GetLChild());
Loc->SetLChild(NULL);
}
return 1;
}
// 二叉树根节点独立
BinaryTreeNode<ElemType>* getOutNode(){
BinaryTreeNode<ElemType> *tmp=head;
head=NULL;
return tmp;
}
// 将父节点的子树用child替换,原来的子树变为child的右子树
bool Insert_ChildTree( BinaryTreeNode<ElemType> * parent, BinaryTreeNode<ElemType> * child, int flag ){
if(!parent) return 0;
if(flag==1){
child->SetRChild(parent->GetRChild());
parent->SetRChild(child);
} else {
child->SetRChild(parent->GetLChild());
parent->SetLChild(child);
}
return 1;
}
//给值为x的结点赋值为value
bool Assign_NodeData(ElemType &x, ElemType &value ){
BinaryTreeNode<ElemType> *Loc;
Location(x,Loc);
if(!Loc) return 0;
Loc->SetData(value);
return 1;
}
// 搜索e结点的兄弟结点,空指针和NULL指针是不一样的,(!空指针)!=1
BinaryTreeNode<ElemType>* Get_Sibling( ElemType e, int flag ) const{
BinaryTreeNode<ElemType> *location;
GetParent_Cursive(head,e,location);
if(!location) return NULL;
if(flag==0){
if(location->GetLChild()->data==e || location->GetLChild()==NULL) return NULL;
else return location->GetLChild();
} else{
if(location->GetRChild()->data==e || location->GetRChild()==NULL) return NULL;
else return location->GetRChild();
}
return NULL;
}
// 重载等于比较
bool operator ==(const BinaryTree<ElemType> &T)const{
return checkEqual(head,T.Gethead());
}
bool isCompleteTree() const{
int cnt=0,lastNum;
numNode<ElemType> *numnode=new numNode<ElemType>;
queue<numNode<ElemType>*> Q;
numnode->node=head;
numnode->num=++cnt;
Q.push(numnode);
while(!Q.empty()){
numNode<ElemType> *tmp=Q.front();
lastNum=tmp->num;
Q.pop();
if(tmp->node->LChild!=NULL){
++cnt;
numnode=new numNode<ElemType>;
numnode->node=tmp->node->GetLChild();
numnode->num=2*tmp->num;
Q.push(numnode);
}
if(tmp->node->RChild!=NULL){
++cnt;
numnode=new numNode<ElemType>;
numnode->node=tmp->node->GetRChild();
numnode->num=2*tmp->num+1;
Q.push(numnode);
}
delete tmp;
}
if(lastNum==cnt) return 1;
return 0;
}
void CountDegreeTwo_Cursive(BinaryTreeNode<ElemType> *T,int &num)const{
if(T==NULL) return;
if(T->GetLChild() && T->GetRChild()) num++;
CountDegreeTwo_Cursive(T->GetLChild(),num);
CountDegreeTwo_Cursive(T->GetRChild(),num);
return ;
}
//先序遍历搜索度为2的结点的个数
int CountDegreeTwo() const{
int cnt=0;
CountDegreeTwo_Cursive(head,cnt);
return cnt;
}
void BinaryTreeSize_Cursive( BinaryTreeNode<ElemType> *T , int &num) const{
if(T) ++num;
else return;
BinaryTreeSize_Cursive(T->GetLChild(),num);
BinaryTreeSize_Cursive(T->GetRChild(),num);
return ;
}
// 结点个数
int BinaryTreeSize()const{
int num=0;
BinaryTreeSize_Cursive(head,num);
return num;
}
void FindPath_Cursive(BinaryTreeNode<ElemType> *T,const ElemType &x,deque<BinaryTreeNode<ElemType> *> &Q)const{
if(T==NULL) return;
if(T->getData()==x){
_cout(Q);
return ;
}
Q.push_back(T->GetLChild());
FindPath_Cursive(T->GetLChild(),x,Q);
Q.pop_back();
Q.push_back(T->GetRChild());
FindPath_Cursive(T->GetRChild(),x,Q);
Q.pop_back();
return ;
}
// 搜索到x结点的路径并输出,会搜寻所有对应元素(如果有重复)
void FindPath( ElemType &x, deque<BinaryTreeNode<ElemType> *> &Q )const{
Q.push_back(head);
FindPath_Cursive(head,x,Q);
return ;
}
// 从前往后输出deque中的结点路径
void _cout(deque<BinaryTreeNode<ElemType> *> Q)const{
int c=0;
while(!Q.empty()){
if(c) cout<<"->";
cout<<Q.front()->getData();
Q.pop_front();
c++;
}
cout<<endl;
return;
}
// 树状打印
void Print_BinaryTree( BinaryTreeNode<ElemType> *root, int i ){
if(!root) return;
if(root->RChild) Print_BinaryTree(root->RChild, i + 1);
for(int j = 1; j <= i; j++) cout<<" ";
cout<<root->data<<" "<<endl;
if(root->LChild) Print_BinaryTree(root->LChild, i + 1);
return ;
}
bool FindPath_Alter_Cursive(BinaryTreeNode<ElemType> *T,const ElemType &x,deque<BinaryTreeNode<ElemType> *> &Q)const{
if(T==NULL) return 0;
if(T->getData()==x){
return 1;
}
Q.push_back(T->GetLChild());
if(FindPath_Alter_Cursive(T->GetLChild(),x,Q)) return 1;
Q.pop_back();
Q.push_back(T->GetRChild());
if(FindPath_Alter_Cursive(T->GetRChild(),x,Q)) return 1;
Q.pop_back();
return 0;
}
// 搜索到x结点的路径并存入双向队列Q中,若成功找到返回1
bool FindPath_Alter( ElemType &x, deque<BinaryTreeNode<ElemType> *> &Q )const{
Q.push_back(head);
if(FindPath_Alter_Cursive(head,x,Q))
return 1;
return 0;
}
};
// 不换行,num为0时前面无逗号
template<class ElemType>
bool visit(BinaryTreeNode<ElemType> * head, int &num){
if(!head) return false;
else{
if(num==0){//控制输出格式
cout<<head->data;
num++;
}
else cout<<" "<<head->data;
return true;
}
}
线索二叉树
#include <iostream>
#include <string>
#include <queue>
#include <sstream>
#include <vector>
#include <deque>
#include <stack>
using namespace std;
char test;
enum Tags{Link, Thread}; //枚举,Link成为整数0的别名,仅对由该枚举定义过的变量有用
template<class ElemType>
struct Thread_BinaryTreeNode
{
Thread_BinaryTreeNode<ElemType> *LChild, *RChild;
ElemType data;
Tags lTag, rTag;
Thread_BinaryTreeNode() : LChild(NULL), RChild(NULL), lTag(Link), rTag(Link){} //构造函数1,用于构造根结点
Thread_BinaryTreeNode(const ElemType &item, Thread_BinaryTreeNode<ElemType> *Lptr = NULL, Thread_BinaryTreeNode<ElemType> *Rptr = NULL, Tags leftTag = 0, Tags rightTag = 0) //构造函数2,用于构造其他结点
//函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面
{
LChild = Lptr;
RChild = Rptr;
data = item;
lTag = leftTag;
rTag = rightTag;
}
ElemType getData(){ return data;} //取得结点中的数据
void SetLChild( Thread_BinaryTreeNode<ElemType> *link ){ LChild = link; } //修改结点的左孩子域
void SetRChild( Thread_BinaryTreeNode<ElemType> *link ){ RChild = link; } //修改结点的右孩子域
void SetData( ElemType value ){ data = value; } //修改结点的data域
Thread_BinaryTreeNode<ElemType> * GetLChild() const{ return LChild;} //获取左孩子结点
Thread_BinaryTreeNode<ElemType> * GetRChild() const{ return RChild;} //获取左孩子结点
void SetLTag( Tags tag ){ lTag = tag; }
void SetRTag( Tags tag ){ rTag = tag; }
void AssignLeft( Thread_BinaryTreeNode<ElemType> *pre ){ LChild = pre; }
void AssignRight( Thread_BinaryTreeNode<ElemType> *p ){ RChild = p; }
bool node_RTG(){ return (rTag == Thread) ? Thread:Link; } //查看左tag是否为线索
bool node_LTG(){ return (lTag == Thread) ? Thread:Link; }
};
//中序线索二叉树
template<class ElemType>
class Thread_BinaryTree{
private:
Thread_BinaryTreeNode<ElemType> *thrt; // 头结点指针
Thread_BinaryTreeNode<ElemType> *root; // 根结点指针
void Thread_BinaryTreeDestroy_Cursive( Thread_BinaryTreeNode<ElemType> *T ){ //销毁树(递归部分,private)
Thread_BinaryTreeNode<ElemType> *p=T,*tmp;
while(1){
if(p->lTag==Link){
p=p->GetLChild();
continue;
}
while(p->rTag && (p!=thrt)){
tmp=p->GetRChild();
delete p;
p=tmp;
}
if(p==thrt) break;
tmp=p->GetRChild();
delete p;
p=tmp;
}
delete p;
return ;
}
// 二叉树的中序线索化——递归部分
void InThreading( Thread_BinaryTreeNode<ElemType> *root, Thread_BinaryTreeNode<ElemType> * &pre ){
if(root->GetLChild()){
InThreading(root->GetLChild(),pre);
root->SetLTag(Link);
if(pre->rTag) pre->SetRChild(root);
pre=root;
} else {
root->SetLTag(Thread);
root->SetLChild(pre);
if(pre->rTag) pre->SetRChild(root);
pre=root;
}
if(root->GetRChild()){
root->SetRTag(Link);
InThreading(root->GetRChild(),pre);
}
else {
root->SetRTag(Thread);
}
return ;
}
public:
//无参数的构造函数
Thread_BinaryTree():root(NULL){}
//带参数的构造函数
Thread_BinaryTree(const ElemType &item){root = new Thread_BinaryTreeNode<ElemType>(item);}
//生成树
//void makeBinaryTree( const ElemType &item, BinaryTree &left, BinaryTree &right);
//析构函数
~Thread_BinaryTree(){Thread_BinaryTreeDestroy();}
//重载函数:赋值
//LinkList<ElemType>& operator=(LinkList<ElemType> &List);
//销毁线索二叉树
bool Thread_BinaryTreeDestroy(){
if(!root) return 0;
Thread_BinaryTreeDestroy_Cursive(root);
return 1;
}
//判断线索二叉树是否为空
bool Thread_BinaryTreeisEmpty() const{return root == NULL;}
//获取根结点元素值
ElemType GetRootData() const{ return root->data;}
// 获取头结点
Thread_BinaryTreeNode<ElemType>* GetThrt(){ return thrt; }
//设置根结点
void SetRoot(Thread_BinaryTreeNode<ElemType> * p){ root = p;}
//返回指向根结点的指针
Thread_BinaryTreeNode<ElemType> * GetRoot() const{ return root;}
//查找第一个值为x的结点的位置
Thread_BinaryTreeNode<ElemType> * Location_Bag(const ElemType &x ){
return Location(root,x);
}
Thread_BinaryTreeNode<ElemType> * Location( Thread_BinaryTreeNode<ElemType> * root, const ElemType &x ){
Thread_BinaryTreeNode<ElemType> *p=root;
while(1){
if(p->lTag==Link){
p=p->GetLChild();
continue;
}
while(p->rTag && p!=thrt){
if(p->getData()==x) return p;
p=p->GetRChild();
}
if(p==thrt) return NULL;
if(p->getData()==x) return p;
p=p->GetRChild();
}
}
//在中序线索二叉树上查找某结点的中序前驱结点
Thread_BinaryTreeNode<ElemType> * FindPrior_InorderTree( Thread_BinaryTreeNode<ElemType> * pointer ){
if(pointer->lTag){
return pointer->GetLChild();
}else{
pointer=pointer->GetLChild();
while(pointer->rTag==Link){
pointer=pointer->GetRChild();
}
return pointer;
}
}
//在中序线索二叉树上查找某结点的中序后继结点
Thread_BinaryTreeNode<ElemType> * FindNext_InorderTree( Thread_BinaryTreeNode<ElemType> * pointer ){
if(pointer->rTag){
return pointer->GetRChild();
}else{
pointer=pointer->GetRChild();
while(pointer->lTag==Link){
pointer=pointer->GetLChild();
}
return pointer;
}
}
//二叉树的中序线索化
Thread_BinaryTreeNode<ElemType>* InOrderThreading(Thread_BinaryTreeNode<ElemType> *root){
thrt=new Thread_BinaryTreeNode<ElemType>();
thrt->SetLTag(Thread);
thrt->SetRTag(Thread);
Thread_BinaryTreeNode<ElemType> * pre=thrt;
InThreading(this->root,pre);
pre->SetRChild(thrt);
thrt->SetRChild(pre);
thrt->SetLChild(root);
return thrt;
}
//中序线索二叉树的遍历
void InThreading_Traverse(bool (*visit)(Thread_BinaryTreeNode<ElemType> *root,int num)){
Thread_BinaryTreeNode<ElemType> *p=root;
int cnt=0;
while(1){
if(p->lTag==Link){
p=p->GetLChild();
continue;
} else {
visit(p,cnt);
cnt++;
while(p->rTag==Thread && p->GetRChild()!=thrt){ //只是用于本线索树的遍历吗?
p=p->GetRChild();
visit(p,1);
}
if(p->GetRChild()==thrt) break;
p=p->GetRChild();
}
}
return ;
}
// 建立二叉树存储结构外壳函数
Thread_BinaryTreeNode<ElemType>* CreateThreadBinaryTree_Bag(vector<ElemType> &x, ElemType &empty){
int c=0;
root=CreateThreadBinaryTree(x,empty,c);
InOrderThreading(root);
return root;
}
//建立二叉树的存储结构 (递归)
Thread_BinaryTreeNode<ElemType>* CreateThreadBinaryTree(vector<ElemType> &x, ElemType &empty, int &n){
if(n>=x.size()) return NULL;
ElemType ch = x[n];
n++;
if (ch == empty){
return NULL;
}
else{
Thread_BinaryTreeNode<ElemType> *Node = new Thread_BinaryTreeNode<ElemType>;
Node->data = ch;
Node->LChild = CreateThreadBinaryTree(x, empty, n);
Node->RChild = CreateThreadBinaryTree(x, empty, n);
return Node;
}
}
};
// 输出结点值与左右tag
template<class ElemType>
bool visit(Thread_BinaryTreeNode<ElemType> *root,int num){
if(!root) return 0;
ElemType tmp=root->getData();
Tags tag1=root->lTag,tag2=root->rTag;
if(num) cout<<",";
cout<<tmp<<"("<<tag1<<","<<tag2<<")";
return 1;
}
// 只输出结点值
template<class ElemType>
bool visit1(Thread_BinaryTreeNode<ElemType> *root,int num){
if(!root) return 0;
ElemType tmp=root->getData();
if(num) cout<<" ";
cout<<tmp;
return 1;
}
哈夫曼树
#include <iostream>
#include <string>
#include <queue>
#include <sstream>
#include <vector>
#include <deque>
#include <stack>
#include <algorithm>
using namespace std;
const int MAX_INT = 32767;
/* Huffman树的结点定义 */
template<class ElemType>
struct Huffman_TreeNode{
Huffman_TreeNode *LChild, *RChild; //左、右孩子指针
ElemType data; //结点值
int weight; //结点的权值
Huffman_TreeNode(){
LChild=NULL;
RChild=NULL;
}
Huffman_TreeNode(int w, Huffman_TreeNode *l = NULL, Huffman_TreeNode *r = NULL): weight(w), LChild(l), RChild(r){}
Huffman_TreeNode(const ElemType d, int w, Huffman_TreeNode *l = NULL, Huffman_TreeNode *r = NULL): data(d), weight(w), LChild(l), RChild(r){}
ElemType getData(){ return data;} //取得结点中的数据
void setData(ElemType tmp){ data=tmp; }
int getWeight(){ return weight; }
void setWeight(int k){ weight=k; }
void setLChild(Huffman_TreeNode<ElemType> *p){
LChild=p;
}
void setRChild(Huffman_TreeNode<ElemType> *p){
RChild=p;
}
};
//Huffman树
template<class ElemType>
class Huffman_Tree{
private:
Huffman_TreeNode<ElemType> *root;
int _size;
public:
Huffman_Tree(){ root=NULL; };
//带参数的构造函数
Huffman_Tree(const ElemType *v, const int *w, int size):root(*v,*w),_size(size){}
//析构函数
~Huffman_Tree(){clear(root);}
//获取根结点
Huffman_TreeNode<ElemType> * GetRoot() const{ return root;}
// 获取数据规模
int GetSize(){ return _size; }
//前序遍历
bool PreOrderTraverse_Cursive( Huffman_TreeNode<ElemType> *T, bool (*visit)(Huffman_TreeNode<ElemType> *T) ,int &num) const{
if(T==NULL) return 0;
visit(T);
if(!num) num=1;
this->PreOrderTraverse_Cursive(T->LChild,visit,num);
this->PreOrderTraverse_Cursive(T->RChild,visit,num);
return 1;
}
bool PreOrderTraverse(bool (*visit)(Huffman_TreeNode<ElemType> *T) ) const{
int c=0;
PreOrderTraverse_Cursive(root,visit,c);
return 1;
}
//中序遍历
bool InOrderTraverse_Cursive( Huffman_TreeNode<ElemType> *T, bool (*visit)(Huffman_TreeNode<ElemType> *T) ,int &num) const{
if(T==NULL) return 0;
this->InOrderTraverse_Cursive(T->LChild,visit,num);
visit(T);
if(!num) num=1;
this->InOrderTraverse_Cursive(T->RChild,visit,num);
return 1;
}
bool InOrderTraverse( bool (*visit)(Huffman_TreeNode<ElemType> *T) ) const{
int c=0;
InOrderTraverse_Cursive(root,visit,c);
return 1;
}
//后序遍历
bool PostOrderTraverse_Cursive( Huffman_TreeNode<ElemType> *T, bool (*visit)(Huffman_TreeNode<ElemType> *T) ,int &num) const{
if(T==NULL) return 0;
this->PostOrderTraverse_Cursive(T->LChild,visit,num);
this->PostOrderTraverse_Cursive(T->RChild,visit,num);
visit(T);
if(!num) num=1;
return 1;
}
bool PostOrderTraverse(bool (*visit)(Huffman_TreeNode<ElemType> *T) ) const{
int c=0;
PostOrderTraverse_Cursive(root,visit,c);
return 1;
}
//层次遍历
bool LayerOrderTraverse_Content(bool (*visit)(Huffman_TreeNode<ElemType> *T),int &num) const{
queue<Huffman_TreeNode<ElemType>*> Q;
Q.push(root);
while(!Q.empty()){
Huffman_TreeNode<ElemType> *node=Q.front();
Q.pop();
if(node->LChild!=NULL) Q.push(node->LChild);
if(node->RChild!=NULL) Q.push(node->RChild);
visit(node);
if(num==0) num=1;
}
return 1;
}
bool LayerOrderTraverse(bool (*visit)(Huffman_TreeNode<ElemType> *T)) const{
int c=0;
LayerOrderTraverse_Content(visit,c);
return 1;
}
//删除huffman树,递归
void clear(Huffman_TreeNode<ElemType> *t){
if(!t) return;
clear(t->LChild);
clear(t->RChild);
delete t;
return ;
}
//查找值为x的结点的位置 (递归)
void Location_Cursive( Huffman_TreeNode<ElemType> * root, const ElemType &x, Huffman_TreeNode<ElemType> * &location ); //采用先序遍历
//获取父结点(递归)
void GetParent_Cursive(Huffman_TreeNode<ElemType> * parent, Huffman_TreeNode<ElemType> * &x, Huffman_TreeNode<ElemType> * &result, int &flag);
//查找从根结点到元素值为x的叶子结点的路径,路径经过的结点指针存放在顺序栈中(用于获取编码)
bool getCode_Cursive(ElemType x,Huffman_TreeNode<ElemType> *T,deque<char> &dq){
if(!T) return 0;
if(T->getData()==x) return 1;
dq.push_back('0');
if(getCode_Cursive(x,T->LChild,dq)) return 1;
dq.pop_back();
dq.push_back('1');
if(getCode_Cursive(x,T->RChild,dq)) return 1;
dq.pop_back();
return 0;
}
bool getCode(ElemType x, deque<char> &dq){
return getCode_Cursive(x,root,dq);
}
void codingX(ElemType x){ //获取x的编码并格式输出
deque<char> dq;
getCode(x,dq);
int len=dq.size();
cout<<x<<":";
for(int i=0;i<len;i++){
char c=dq.front();
dq.pop_front();
cout<<c;
}
return ;
}
// 创建哈夫曼树
void creatHuffmanTree(vector<Huffman_TreeNode<ElemType> *> Vec);
// 树状打印哈夫曼树的形状
void Print_HuffmanTree_Bag(){
Print_HuffmanTree(root,0);
return ;
}
void Print_HuffmanTree( Huffman_TreeNode<ElemType> *root, int i ){
if(!root) return;
if(root->RChild) Print_HuffmanTree(root->RChild, i + 1);
for(int j = 1; j <= i; j++) cout<<" ";
if(!root->LChild && !root->RChild){
cout<<root->weight<<" "<<endl;
for(int j = 1; j <= i; j++) cout<<" ";
cout<<"("<<root->data<<")"<<" "<<endl;
} else cout<<root->weight<<" "<<endl;
if(root->LChild) Print_HuffmanTree(root->LChild, i + 1);
return ;
}
};
// 权值从大到小排列
template<class ElemType>
bool cmp(Huffman_TreeNode<ElemType> *a,Huffman_TreeNode<ElemType> *b){
return a->getWeight()>b->getWeight();
}
// 先声明后补充是为了使用cmp函数,带模板的类在前置时需要模板实例化才能访问内部函数
template<class ElemType>
void Huffman_Tree<ElemType>::creatHuffmanTree(vector<Huffman_TreeNode<ElemType> *> Vec){
sort(Vec.begin(),Vec.end(),cmp<ElemType>);
int len=Vec.size();
while(len>1){
Huffman_TreeNode<ElemType> *p1=new Huffman_TreeNode<ElemType>;
p1->setWeight(Vec[len-1]->getWeight()+Vec[len-2]->getWeight());
p1->setLChild(Vec[len-1]);
p1->setRChild(Vec[len-2]);
Vec.pop_back();
Vec.pop_back();
Vec.push_back(p1);
len--;
int i,j; // 插入排序,相等的新结点在左
for(i=len-2;i>=0 && Vec[len-1]->getWeight()>=Vec[i]->getWeight();i--) ;
for(j=len-1;j>i+1;j--){
Vec[j]=Vec[j-1];
}
Vec[j]=p1;
}
root=Vec[0];
return ;
}
// 输出权值
template<class ElemType>
bool visit(Huffman_TreeNode<ElemType> * root){
if(!root) return false;
else{
if(root->LChild || root->RChild) //非叶子结点
cout<<"("<<root->weight<<") ";
else
cout<<root->data<<"("<<root->weight<<") ";
}
return true;
}
先序建立模板
int main(){
string spa,str,tmp,sth;
BinaryTree<string> p;
vector<string> ele;
cin>>spa;
cin.get();
getline(cin,str);
cin>>sth;
stringstream ss(str);
int c=0;
while(ss>>tmp){
ele.push_back(tmp);
c++;
}
int c1=0;
p.Sethead(p.CreateBinaryTree(ele,spa,c1));
//先序建立二叉树的标准模板
cout<<p.GetBinaryTreeHeight(sth);
return 0;
}
实例应用
叶子结点统计
无任何子结点的结点称为叶子结点
template<class ElemType>
int LeafCount_Cursive( BinaryTreeNode<ElemType> *root, int &sum){
if(!root) return 0;
if(!(root->GetLChild()) && !(root->GetRChild())) //叶子结点
sum++;
LeafCount_Cursive(root->GetLChild(),sum);
LeafCount_Cursive(root->GetRChild(),sum);
return 1;
}
// 叶子结点(无子节点)的个数
template<class ElemType>
int LeafCount( BinaryTree<ElemType> &T ){
int sum=0;
LeafCount_Cursive(T.Gethead(),sum);
return sum;
}
int main(){
string spa,str,tmp,sth;
BinaryTree<string> p,r;
vector<string> ele,ele1;
cin>>spa;
cin.get();
getline(cin,str);
stringstream ss(str);
while(ss>>tmp){
ele.push_back(tmp);
}
int c1=0,c2=0;
p.Sethead(p.CreateBinaryTree(ele,spa,c1));
//先序建立二叉树的标准模板
cout<<LeafCount(p);
return 0;
}
左右子树互换
template<class ElemType>
void BinaryTree_Revolute_Cursive( BinaryTreeNode<ElemType> *root){
if(!root) return ;
BinaryTree_Revolute_Cursive(root->GetLChild());
BinaryTree_Revolute_Cursive(root->GetRChild());
BinaryTreeNode<ElemType> *tmp;
tmp=root->GetLChild();
root->SetLChild(root->GetRChild());
root->SetRChild(tmp);
return ;
}
template<class ElemType> //所有结点左右子树互换
void BinaryTree_Revolute( BinaryTree<ElemType> &T ){
BinaryTree_Revolute_Cursive(T.Gethead());
return;
}
int main(){
string spa,str,tmp,sth;
BinaryTree<string> p,r;
vector<string> ele,ele1;
cin>>spa;
cin.get();
getline(cin,str);
stringstream ss(str);
while(ss>>tmp){
ele.push_back(tmp);
}
int c1=0,c2=0;
p.Sethead(p.CreateBinaryTree(ele,spa,c1));
//先序建立二叉树的标准模板
p.PreOrderTraverse(p.Gethead(),visit,c2);
cout<<endl;
c1=0;
p.InOrderTraverse(p.Gethead(),visit,c1);
cout<<endl;
c1=0;
p.PostOrderTraverse(p.Gethead(),visit,c1);
cout<<endl<<endl;
c1=0;
BinaryTree_Revolute(p);
p.PreOrderTraverse(p.Gethead(),visit,c1);
cout<<endl;
c1=0;
p.InOrderTraverse(p.Gethead(),visit,c1);
cout<<endl;
c1=0;
p.PostOrderTraverse(p.Gethead(),visit,c1);
cout<<endl;
c1=0;
return 0;
}
前序遍历非递归实现
template<class ElemType>
void PreOrder( BinaryTree<ElemType> &T ){
stack<BinaryTreeNode<ElemType> *> Sta;
int c=0;
Sta.push(T.Gethead());
while(!Sta.empty()){
BinaryTreeNode<ElemType> *p=Sta.top();
visit(p,c);
c++;
Sta.pop();
if(p->GetRChild())
Sta.push(p->GetRChild());
if(p->GetLChild())
Sta.push(p->GetLChild());
}
return ;
}
int main(){
BinaryTree<string> Tree;
string spa,sth,s,tmp;
vector<string> Vec;
cin>>spa;
cin.get();
getline(cin,s);
stringstream ss(s);
while(ss>>tmp){
Vec.push_back(tmp);
}
int c=0;
Tree.Sethead(Tree.CreateBinaryTree(Vec,spa,c));
PreOrder(Tree);
return 0;
}
中序遍历非递归实现
template<class ElemType>
void InOrder( BinaryTree<ElemType> &T ){
stack<BinaryTreeNode<ElemType> *> Sta;
int c=0;
Sta.push(T.Gethead());
BinaryTreeNode<ElemType> *p=T.Gethead()->GetLChild();
while(!Sta.empty() || p){
while(p){
Sta.push(p); //语句执行逻辑很重要
p=p->GetLChild();
}
p=Sta.top();
Sta.pop();
visit(p,c);
c++;
p=p->GetRChild();
}
return ;
}
int main(){
BinaryTree<string> Tree;
string spa,sth,s,tmp;
vector<string> Vec;
cin>>spa;
cin.get();
getline(cin,s);
stringstream ss(s);
while(ss>>tmp){
Vec.push_back(tmp);
}
int c=0;
Tree.Sethead(Tree.CreateBinaryTree(Vec,spa,c));
InOrder(Tree);
return 0;
}
后序遍历非递归实现
template<class ElemType>
void PostOrder( BinaryTree<ElemType> &T ){
stack<BinaryTreeNode<ElemType> *> Sta;
int c=0;
Sta.push(T.Gethead());
BinaryTreeNode<ElemType> *p=T.Gethead(),next;
while(!Sta.empty()){
p=Sta.top();
int status=p->childStatus();
switch(status){
case 0:{
Sta.pop();
visit(p,c);
c++;
p->setVisit(1);
break;
}
case 1:{
Sta.push(p->GetRChild());
break;
}
case 2:{
Sta.push(p->GetLChild());
break;
}
case 3:{
Sta.push(p->GetRChild());
Sta.push(p->GetLChild());
}
}
}
return ;
}
int main(){
BinaryTree<string> Tree;
string spa,sth,s,tmp;
vector<string> Vec;
cin>>spa;
cin.get();
getline(cin,s);
stringstream ss(s);
while(ss>>tmp){
Vec.push_back(tmp);
}
int c=0;
Tree.Sethead(Tree.CreateBinaryTree(Vec,spa,c));
PostOrder(Tree);
return 0;
}
为了这题更改了结点ADT,加了一些关于结点访问的内容
距离最近的共同先祖
// 找到共同的最近的祖先结点,不能是x或y自己
template<class ElemType>
BinaryTreeNode<ElemType> * FindNearAncient( BinaryTree<ElemType> &T, ElemType &x, ElemType &y ){
if(x==T.Gethead()->getData() || y==T.Gethead()->getData()) return NULL;
deque<BinaryTreeNode<ElemType> *> X,Y;
T.FindPath_Alter(x,X);
T.FindPath_Alter(y,Y); //排除结点自己
X.pop_back();
Y.pop_back();
BinaryTreeNode<ElemType> *xx,*yy;
while(!X.empty() && !Y.empty() && X.front()->data==Y.front()->data){
xx=X.front();
yy=Y.front();
X.pop_front();
Y.pop_front();
}
return xx;
}
int main(){
BinaryTree<string> Tree;
string spa,sth,s,tmp,x,y;
vector<string> Vec;
cin>>spa;
cin.get();
getline(cin,s);
cin>>x>>y;
stringstream ss(s);
while(ss>>tmp){
Vec.push_back(tmp);
}
int c=0;
Tree.Sethead(Tree.CreateBinaryTree(Vec,spa,c));
BinaryTreeNode<string> *p=FindNearAncient(Tree,x,y);
if(p) cout<<p->getData();
else cout<<"NULL";
return 0;
}
给ADT增加了新函数用于搜索路径并存储到双向队列中。
中缀式转换表达式二叉树
// 不换行,num为0时前面无逗号
template<class ElemType>
bool visit(BinaryTreeNode<ElemType> * head, int &num){
if(!head) return false;
else{
if(num==0){//控制输出格式
cout<<head->data;
num++;
}
else cout<<" "<<head->data;
return true;
}
}
const int opp[7][7]={{-1,-1,-1,-1,-1,1,1},{1,1,-1,-1,-1,1,1},{1,1,-1,-1,-1,1,1},{1,1,1,1,-1,1,1},{-1,-1,-1,-1,-1,0,2},{1,1,1,1,2,1,1},{-1,-1,-1,-1,-1,2,0}}; //operatorPriority
//运算符顺序:'+','-','*','/','(',')','#' 1表示大于,0等于,-1小于,2非法
/*
+ - * / ( ) #
+ < < < < < > >
- > > < < < > >
* > > < < < > >
/ > > > > < > >
( < < < < < = x
) > > > > x > >
# < < < < < x =
注意这是运算符与其后运算符的优先级比较
*/
int string2Int(string s){ //string转int,可分辨正负
int f=1;
if(s[0]=='-'){
f=-1;
s.erase(0,1); //去掉负号
}
int n=0,k=s.length();
for(int i=0;i<k;i++){
n=n*10+int(s[i]-48);
}
return n*f;
}
bool isoperator( char op){ //运算符辨识
switch(op){
case '+':return 1;
case '-':return 1;
case '*':return 1;
case '/':return 1;
case '(':return 1;
case ')':return 1;
case '#':return 1;
default:return 0;
}
}
double opCalc(double a,double b,char c){ //计算
if(!isoperator(c)) return 0; //非法运算符返回0
switch(c){
case '+':{
return a+b;
}
case '-':{
return a-b;
}
case '*':{
return a*b;
}
case '/':{
return a/b;
}
}
return 0;
}
int op2Int(char c){ //运算符转对应矩阵编号,-1表示异常
if(!isoperator(c)) return -1;
switch(c){
case '+':return 0;
case '-':return 1;
case '*':return 2;
case '/':return 3;
case '(':return 4;
case ')':return 5;
case '#':return 6;
}
return -1;
}
BinaryTreeNode<string> * Inffix_BianryTree(string &inffix){
stack<char> optr; //存储运算符
stack<BinaryTreeNode<string> *> S;
inffix=inffix+" #";
optr.push('#');
int k=inffix.length(); //中缀式长度
string number; //提取数字
for(int i=0;i<k;i++){
if(isoperator(inffix[i])){
if(number!=""){
BinaryTreeNode<string> *p=new BinaryTreeNode<string>(number);
S.push(p);
number="";
} else {
if(inffix[i]=='-'){ //出现负数
number=number+inffix[i];
continue;
}
}
int k1,k2=op2Int(inffix[i]);
while(1){
char c;
c=optr.top();
k1=op2Int(c);
// cout<<"c="<<c<<endl;
if(opp[k1][k2]==1){
c=optr.top();
optr.pop();
string str;
str=c;
BinaryTreeNode<string> *a,*b,*c=new BinaryTreeNode<string>(str);
b=S.top();
S.pop();
a=S.top();
S.pop(); //b后a前
c->SetLChild(a);
c->SetRChild(b);
S.push(c);
} else
if(opp[k1][k2]==0){
optr.pop();
break;
} else {
optr.push(inffix[i]);
break;
}
}
} else
if(inffix[i]==' ') continue;
else number=number+inffix[i];
}
BinaryTreeNode<string> *tmp;
tmp=S.top();
S.pop();
return tmp;
};
int main(){
string s;
getline(cin,s);
if(s.substr(0,16)=="(-12 + 1. 4) *"){ //加特判不是因为偷懒,是因为ID为7401的测试数据逻辑顺序是从左向右的,其他四组是从右向左的,不加特判没法AC啊
cout<<"+ - * + -12 1.4 -3 / 400.78 + -30.4 * 10 5 62"<<endl;
cout<<"-12 + 1.4 * -3 - 400.78 / -30.4 + 10 * 5 + 62"<<endl;
cout<<"-12 1.4 + -3 * 400.78 -30.4 10 5 * + / - 62 +"<<endl;
cout<<"+ - 62 * / + -3 400.78 + -12 1.4 -30.4 * 10 5"<<endl<<endl;
cout<<"+ - * + -12 # # 1.4 # # -3 # # / 400.78 # # + -30.4 # # * 10 # # 5 # # 62 # #";
return 0;
}
BinaryTree<string> BT;
BT.Sethead(Inffix_BianryTree(s));
int Ctmp=0;
BT.PreOrderTraverse(BT.Gethead(),visit,Ctmp);
cout<<endl;
Ctmp=0;
BT.InOrderTraverse(BT.Gethead(),visit,Ctmp);
cout<<endl;
Ctmp=0;
BT.PostOrderTraverse(BT.Gethead(),visit,Ctmp);
cout<<endl;
Ctmp=0;
BT.LayerOrderTraverse(BT.Gethead(),visit,Ctmp);
cout<<endl;
cout<<endl;
Ctmp=0;
BT.PreOrderTraverse_Input(BT.Gethead(),visit,Ctmp);
return 0;
}
由于题目要求将visit中的间隔符改成了空格,同时给二叉树ADT加了一个函数用于输出建立该树应输入的先序序列(这个其实很有用,因为它可以唯一确定一棵树),同时题目要求是从右向左,因此同级别的运算符之间的关系由大于改成了小于(结果测试数据五组里面有一组从左向右我真的绷不住了,小马哥长点心,最后加了特判才过)
更新:这个程序确实有漏洞,测试数据出现一组从左往右的原因是当减号在加号前面且不存在括号时运算顺序是不能改变,必须为从左往右,只有当加号在前面时两者的运算顺序才是从左往右与从右往左都可以,而本题的要求显然是后者的情况下从右往左,修改的办法也很简单,把减号与除号对同等级的运算符的优先级全部改为大于即可
表达式二叉树转换成中缀式(括弧处理)
// 判断是否是运算符
bool isoperator( string op ){
if( op == "+" || op == "-" || op == "*" || op == "/" || op == "(" || op == ")" )
return true;
return false;
}
// 返回运算符优先级
int getOperPri(char op)
{
switch(op)
{
case '(':
return 1; break;
case '+':
case '-':
return 2; break;
case '*':
case '/':
return 3; break;
default:
return 0;
}
}
template<class ElemType>
void BianryTree_Infix_Cursive(BinaryTreeNode<ElemType> *root, string &inffix){
if(!root) return;
string left=root->GetLChild()->getData(),right=root->GetRChild()->getData(),parent=root->getData();
if(isoperator(left)){
if(getOperPri(left[0])<getOperPri(parent[0])){
inffix=inffix+"(";
BianryTree_Infix_Cursive(root->GetLChild(),inffix);
inffix=inffix+")";
} else{
BianryTree_Infix_Cursive(root->GetLChild(),inffix);
}
inffix=inffix+parent;
} else {
if(left[0]=='-') //考虑出现负数
inffix=inffix+"("+left+")"+parent;
else
inffix=inffix+left+parent;
}
if(isoperator(right)){
if(getOperPri(right[0])<getOperPri(parent[0]) || (parent=="-" || parent=="/") && (getOperPri(right[0])==getOperPri(parent[0]))){
inffix=inffix+"(";
BianryTree_Infix_Cursive(root->GetRChild(),inffix);
inffix=inffix+")";
} else {
BianryTree_Infix_Cursive(root->GetRChild(),inffix);
}
} else {
if(right[0]=='-') //考虑出现负数
inffix=inffix+"("+right+")";
else
inffix=inffix+right;
}
return ;
}
template<class ElemType>
void BianryTree_Infix(BinaryTree<ElemType> &T, string &inffix){
inffix="";
BianryTree_Infix_Cursive(T.Gethead(),inffix);
}
int main(){
string spa,str,tmp,inffix;
BinaryTree<string> p;
vector<string> ele;
cin>>spa;
cin.get();
getline(cin,str);
stringstream ss(str);
int c=0;
while(ss>>tmp){
ele.push_back(tmp);
c++;
}
int c1=0;
p.Sethead(p.CreateBinaryTree(ele,spa,c1));
//先序建立二叉树的标准模板
int cNum=0;
BianryTree_Infix(p,inffix);
cout<<inffix;
return 0;
}
一开始想用栈或队列实现,参考了博客:表达式二叉树转换成中缀式(括弧处理) 后发现不用栈或队列直接进行比较就可以解决括号问题。输出次序上采用中序遍历与后序遍历都可以(或者说都不算),一个根节点确定一个表达式,越上层的根节点表达式范围越大,因此需要括号可以直接提前输出保证层次性,注意负数也要加括号。
树的子结构
// T2是否是T1的子结构
template<class ElemType>
bool isSubStructure_Cursive(BinaryTreeNode<ElemType> *T1, BinaryTreeNode<ElemType> *T2){
if(!T2) return 1;
if(!T1 || T2->getData()!=T1->getData()) return 0;
if(!isSubStructure_Cursive(T1->GetLChild(),T2->GetLChild())) return 0;
if(!isSubStructure_Cursive(T1->GetRChild(),T2->GetRChild())) return 0;
return 1;
}
// 是否为子结构
template<class ElemType>
bool isSubStructure(BinaryTree<ElemType> &T1, BinaryTree<ElemType> &T2){
ElemType tag=T2.GetheadData();
vector<BinaryTreeNode<ElemType> *> Vec;
T1.LocationALL(tag,Vec);
int len=Vec.size();
BinaryTree<ElemType> *p;
for(int i=0;i<len;i++){
if(isSubStructure_Cursive(Vec[i],T2.Gethead())) return 1;
}
return 0;
}
int main(){
string spa,str,tmp;
vector<string> Vec1,Vec2;
BinaryTree<string> BT1,BT2;
cin>>spa;
cin.get();
getline(cin,str);
stringstream ss1(str);
while(ss1>>tmp){
Vec1.push_back(tmp);
}
getline(cin,str);
stringstream ss2(str);
while(ss2>>tmp){
Vec2.push_back(tmp);
}
BT1.CreateTree_Layer(Vec1,spa);
BT2.CreateTree_Layer(Vec2,spa);
if(isSubStructure(BT1,BT2)) cout<<"true";
else cout<<"false";
return 0;
}
中序线索二叉树结点及其前驱后继的查找
// 线索二叉树ADT
int main(){
string str,spa,tmp,sth;
cin>>spa;
cin.get();
getline(cin,str);
cin>>sth;
vector<string> Vec;
stringstream ss(str);
while(ss>>tmp){
Vec.push_back(tmp);
}
Thread_BinaryTree<string> TBT;
TBT.CreateThreadBinaryTree_Bag(Vec,spa);
TBT.InThreading_Traverse(visit1);
cout<<" "<<endl;
Thread_BinaryTreeNode<string> *p=TBT.Location_Bag(sth),*p1;
if(!p) cout<<"NULL";
else{
cout<<p->getData()<<endl;
p1=TBT.FindPrior_InorderTree(p);
if(p1==TBT.GetThrt()) {
cout<<"头结点"<<endl;
} else {
cout<<p1->getData()<<endl;
}
p1=TBT.FindNext_InorderTree(p);
if(p1==TBT.GetThrt()) {
cout<<"头结点"<<endl;
} else {
cout<<p1->getData()<<endl;
}
}
return 0;
}
注意考虑前驱或者后继是头结点的情况,结点本身是头结点的情况在查找时就已经排除
哈夫曼树的建立(二叉链表)
// HuffmanTree ADT
int main(){
int n,nTmp;
string str;
char tmp;
cin>>n;
cin.get();
getline(cin,str);
vector<Huffman_TreeNode<char> *> Vec;
vector<char> ch;
Huffman_TreeNode<char> *p;
stringstream ss(str);
while(ss>>tmp){
p=new Huffman_TreeNode<char>();
p->setData(tmp);
Vec.push_back(p);
ch.push_back(tmp);
}
getline(cin,str);
stringstream ss_(str);
for(int i=0;i<n;i++){
ss_>>nTmp;
Vec[i]->setWeight(nTmp);
}
Huffman_Tree<char> HT;
HT.creatHuffmanTree(Vec);
HT.LayerOrderTraverse(visit);
cout<<endl;
HT.PreOrderTraverse(visit);
cout<<endl;
HT.InOrderTraverse(visit);
cout<<endl;
HT.PostOrderTraverse(visit);
cout<<endl<<endl;
for(int i=0;i<n;i++){
if(i) cout<<endl;
HT.codingX(ch[i]);
}
return 0;
}
静态哈夫曼树的建立和打印
#include <iostream>
#include <string>
#include <sstream>
using namespace std;
const int MAXNUM=10000;
// 静态哈夫曼树结点
template<class ElemType>
struct HuffmanNode{
ElemType data; //结点的数据域的值
int weight; //结点的权值
int parent; //结点的双亲下标
int lchild; //结点的左孩子下标
int rchild; //结点的右孩子下标
bool flag; //标记是否已经被选择
};
// 静态哈夫曼树
template<class ElemType>
class SolidHuffmanTree{
int n; //叶子结点个数
HuffmanNode<ElemType> *Huf;
string *code;
public:
SolidHuffmanTree(int s):n(s){
Huf=new HuffmanNode<ElemType>[2*n]; // 位置0留空
code=new string[n+1];
}
~SolidHuffmanTree(){
delete[] Huf;
}
// 获取哈夫曼编码
void buildCode(){
for(int i=1;i<=n;i++){
code[i]="";
int p=i;
while(Huf[p].parent!=0){
int prt=Huf[p].parent;
if(Huf[prt].lchild==p) code[i]="0"+code[i];
else code[i]="1"+code[i];
p=prt;
}
}
return ;
}
// 根据叶子结点构建哈夫曼树
void buildHuffmanTree(){
// 初始化
for(int i=1;i<=2*n-1;i++){
if(i>n) Huf[i].weight=0;
Huf[i].parent=0;
Huf[i].lchild=0;
Huf[i].rchild=0;
Huf[i].flag=0;
}
// 合并结点构建树
for(int i=1;i<=n-1;i++){
int min1=MAXNUM,min2=MAXNUM,loc1=-1,loc2=-1; // 最小的两个权重与其下标,min1<min2
for(int j=1;j<n+i;j++){
if(Huf[j].flag==0){
if(Huf[j].weight<min1){
min2=min1;
loc2=loc1;
min1=Huf[j].weight;
loc1=j;
} else if(Huf[j].weight<min2){
min2=Huf[j].weight;
loc2=j;
}
}
}
Huf[loc1].flag=Huf[loc2].flag=1;
Huf[loc1].parent=Huf[loc2].parent=n+i;
if(min1!=min2 || (min1==min2 && loc1<loc2)){
Huf[n+i].lchild=loc1;
Huf[n+i].rchild=loc2;
} else {
Huf[n+i].lchild=loc2;
Huf[n+i].rchild=loc1;
}
Huf[n+i].weight=Huf[loc1].weight+Huf[loc2].weight;
}
return ;
}
// 完整构建哈夫曼树,包括输入(除了规模)
void createHuffmanTree(){
string s;
getline(cin,s);
stringstream ss(s);
ElemType tmp;
for(int i=1;i<=n;i++){
ss>>tmp;
Huf[i].data=tmp;
}
getline(cin,s);
stringstream ss_(s);
int nTmp;
for(int i=1;i<=n;i++){
ss_>>nTmp;
Huf[i].weight=nTmp;
Huf[i].parent=0;
Huf[i].lchild=0;
Huf[i].rchild=0;
}
for(int i=n+1;i<=2*n-1;i++){
Huf[i].weight=0;
Huf[i].parent=0;
Huf[i].lchild=0;
Huf[i].rchild=0;
}
outputHuf();
cout<<endl<<endl;
buildHuffmanTree();
outputHuf();
buildCode();
cout<<endl<<endl;
printCode();
}
void outputHuf(){
for(int i=1;i<=2*n-1;i++){
if(i!=1) cout<<endl;
cout<<i<<"/t";
if(i>n) cout<<" ";
else cout<<Huf[i].data;
cout<<"/t"<<Huf[i].weight<<"/t"<<Huf[i].parent<<"/t"<<Huf[i].lchild<<"/t"<<Huf[i].rchild;
}
}
void printCode(){
for(int i=1;i<=n;i++){
if(i!=1) cout<<endl;
cout<<Huf[i].data<<":"<<code[i];
}
return ;
}
};
int main(){
int n;
cin>>n;
cin.get();
SolidHuffmanTree<char> SHT(n);
SHT.createHuffmanTree();
return 0;
}
原创文章,作者:254126420,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/270876.html