给定一段一段的绳子,你需要把它们串成一条绳。每次串连的时候,是把两段绳子对折,再如下图所示套接在一起。这样得到的绳子又被当成是另一段绳子,可以再次对折去跟另一段绳子串连。每次串连后,原来两段绳子的长度就会减半。
给定N段绳子的长度,你需要找出它们能串成的绳子的最大长度。
输入格式:
每个输入包含1个测试用例。每个测试用例第1行给出正整数N (2 <= N <= 104);第2行给出N个正整数,即原始绳段的长度,数字间以空格分隔。所有整数都不超过104。
输出格式:
在一行中输出能够串成的绳子的最大长度。结果向下取整,即取为不超过最大长度的最近整数。
输入样例:
8
10 15 12 3 4 13 1 15
输出样例:
14
| 代码长度限制 | 时间限制 | 内存限制 |
| 16KB | 200ms | 64MB |
思路:
因为每次串连时绳子长度将减半,所以如果长的和短的串连则损失较大,因此应该将绳子由短到长进行排列后,按顺序两两之间进行串联,不断这样操作直到变成一根绳子
代码:
#include<bits/stdtr1c++.h>
using namespace std;
int main() {
priority_queue<int, vector<int>, greater<int>> q; //使用优先队列,本质是一个堆,这里的是小顶堆,可以理解为元素从小到大排列
int n, t;
cin >> n;
while (n--) {
cin >> t;
q.emplace(t);
}
while (int(q.size()) > 1) {
int a = q.top();
q.pop();
int b = q.top();
q.pop();
q.push((a + b) / 2); //合并后再次入队
}
cout << q.top();
return 0;
}
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/280454.html