目录
ABC266 – E,F Solutions
E – Throwing the Die
Problem Statement
Let us play a game using a die. The game consists of at most /(N/) turns, each of which goes as follows.
- Throw a /(6/)-sided die that shows /(1,/ldots,6/) with equal probability, and let /(X/) be the number shown (each throw is independent of the others).
- If it is the /(N/)-th turn now, your score is /(X/), and the game ends.
- Otherwise, choose whether to continue or end the game.
- If you end the game, your score is /(X/), and there is no more turn.
Find the expected value of your score when you play the game to maximize this expected value.
Constraints
- /(1≤N≤100/)
Solution
一句话题意:投骰子,投出1~6的概率相等,不满意可以重投,最多投n次,期望投出点数是多少?
先考虑 /(N=2/),每次骰子期望投出 /(3.5/) 的分数,于是第一次投出 /(1/text ~3/) 的时候就可以重投。同理,对于更普遍的情况,当第 /(i/) 次投出的结果小于 /(i+1/text ~N/) 计算得到期望时,就可以考虑重投。
Implementation
此处 f[n]
是倒序的。
n=rd();
f[1]=3.50;
jk(i,2,n)jk(j,1,6)f[i]+=std::max((double)j,f[i-1])/6.0;
printf("%.7lf/n",f[n]);
F – Well-defined Path Queries on a Namori
Problem Statement
You are given a connected simple undirected graph /(G/) with /(N/) vertices numbered /(1/) to /(N/) and /(N/) edges. The /(i/)-th edge connects Vertex /(u_i/) and Vertex /(v_i/) bidirectionally.
Answer the following /(Q/) queries.
- Determine whether there is a unique simple path from Vertex /(x_i/) to Vertex /(y_i/) (a simple path is a path without repetition of vertices).
Constraints
- /(3≤N≤2×10^5/)
- /(G/) is a connected simple undirected graph with /(N/) vertices and /(N/) edges.
- 1 /leq Q /leq 2 /times 10^5
Solution
N点N边,一眼基环树,先tarjan找到环。不难发现两点仅存在一条路径时,它们在环上节点的同一颗(向环外的)子树内,于是直接dfs就好了,下面是样例2的示意图:
Implementation
void ta(int u,int f){
st[++s]=u;is[u]=1;
fn[u]=lo[u]=++T;
for(int i=h[u];i;i=e[i].n){
int v=e[i].v;
if(v==f)continue;
if(!fn[v]){
ta(v,u);
lo[u]=std::min(lo[u],lo[v]);
}else lo[u]=std::min(lo[u],fn[v]);
}
Z[lo[u]]++;
}
void df(int u,int f,int b){
B[u]=b;
for(int i=h[u];i;i=e[i].n){
int v=e[i].v;
if(v!=f&&(u!=b||lo[v]!=o)&&!B[v])df(v,u,b);
}
}
// puts(B[rd()]^B[rd()]?"No":"Yes");
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/pnotes/288329.html