python字符串反转 高阶函数 @property与sorted(八)详解编程语言

(1)字符串反转

1倒序输出

s = 'abcde' 
print(s[::-1]) 
#输出: 'edcba'

2 列表reverse()操作

s = 'abcde' 
lt = list(s) 
lt.reverse() 
print(''.join(lt)) 
#输出: 'edcba'

3 二分法交换位置

s = 'abcde' 
lt = list(s) 
for i in range(len(l) // 2): 
    lt[i], lt[-(i+1)] = lt[-(i+1)], lt[i] 
print(''.join(lt)) 
#输出: 'edcba'

4 列表生成式

s = 'abcde' 
print(''.join([s[i-1] for i in range(len(s), 0, -1)])) 
#输出: 'edcba'

5 栈的思想

s = 'abcde' 
lt = list(s) 
res = '' 
while lt: 
   res += lt.pop() 
print(res) 
#输出: 'edcba'

6 递归的思路

def res_str(s): 
    if len(s) == 1: 
        return s 
    head = s[0] 
    tail = s[1:] 
    return res_str(tail)+head 
res_str('abcd') 
#输出: 'dcba'

(2)冒泡排序

采用循环

import numpy as np 
def bubble_sort(arr): 
    for i in range(1,arr.size): 
        for j in range(arr.size-1): 
            if arr[j] > arr[j+1]: 
                arr[j],arr[j+1] = arr[j+1],arr[j] 
                print(arr) 
arr = np.array([4,7,8,9,3,6,7,9,4,0]) 
bubble_sort(arr)

采用数组中的partition,用递归实现

import numpy as np 
def quick_sort(arr): 
    if arr.size == 1: 
        return arr 
    _arr = np.partition(arr,1)  #在索引1前面的一定是最小值 
    return np.append(_arr[:1],quick_sort(_arr[1:])) 
quick_sort(arr) 
 
def quick_sort2(arr): 
    if arr.size < 2: 
        return arr 
    _arr = np.partition(arr,1)  #在索引2前面的一定是最小值 
    return np.append(_arr[:2],quick_sort2(_ar/r[2:])) 
quick_sort2(arr)

(3)高阶函数用法

map函数的用法

map : map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])) 
['1', '2', '3', '4', '5', '6', '7', '8', '9']

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

reduce函数的用法

reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场

from functools import reduce 
>>> def func(x, y): 
...     return x * 10 + y 
... 
>>> reduce(func, [1, 3, 5, 7, 9]) 
13579

如果是完成字符串转数字了,那么就可以采用map与reduce组合

>>> from functools import reduce 
>>> def func(x, y): 
...     return x * 10 + y 
... 
>>> def tran(s): 
...     digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} 
...     return digits[s] 
... 
>>> reduce(func, map(tran, '13579')) 
13579 
 
>>>reduce(lambda x,y:10*x+y, map(tran,'13579'))  #字符串也是可迭代的 
13579

对于一般的函数表达式我们建议采用lambda函数实现,下面我们用lambda函数改写

>>>reduce(lambda x,y: x*10+y , [1,3,5,7,9]) 
13579 
>>>reduce(lambda x,y:10*x+y, map(int,['1','3','5','7','9'])) 
13579 
>>>reduce(lambda x,y:10*x+y, map(int,['1','3','5','7','9'])) 
13579

filter过滤函数

filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

def not_empty(s): 
    return s and s.strip() 
 
list(filter(not_empty, ['A', '', 'B', None, 'C', '  '])) 
# 结果: ['A', 'B', 'C']

注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

一般我们也会与lambda函数配合,非常方便的取代if判断效果.

class BookViewModel: 
    self.publisher = book['publisher'] 
    self.author = book['author'] 
    self.price = book['price'] 
     
def intro(self): 
        intros = filter(lambda x:True if x else False,[self.author,self.publisher,self.price]) 
        return '/'.join(str(s) for s in intros)

lambda x:True if x else False可以实现对x是否为空的判定,X存在返回True,并保留,X不存在返回空并排除.

注意:

join函数组合可迭代对象时,当对象中存在数字与字符串类型不同时,需要转成统一格式再组合.一般采 取的做法是先遍历可迭代对象转统一格式后合并. ‘/’.join(str(s) for s in intros)

sorted函数

Python内置的sorted()函数

>>> sorted([36, 5, -12, 9, -21]) 
[-21, -12, 5, 9, 36]

sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs) 
[5, 9, -12, -21, 36]

字符串的排序

>>> sorted(['bob', 'about', 'Zoo', 'Credit']) 
['Credit', 'Zoo', 'about', 'bob']

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。

sorted函数中key可以实现用户自定义排序规则,而不仅仅限于简单排序

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True) 
['Zoo', 'Credit', 'bob', 'about']

key=str.lower 按照统一小写排序, reverse=True实现反向排序.

(4)@property

[email protected]负责把一个方法变成属性调用的:

class Student(object): 
    @property 
    def score(self): 
        return self._score 
    @score.setter 
    def score(self, value): 
        if not isinstance(value, int): 
            raise ValueError('score must be an integer!') 
        if value < 0 or value > 100: 
            raise ValueError('score must between 0 ~ 100!') 
        self._score = value

把一个getter方法变成属性,[email protected],此时,@[email protected],负责把一个setter方法变成属性赋值

>>> s = Student() 
>>> s.score = 60 # OK,实际转化为s.set_score(60) 
>>> s.score # OK,实际转化为s.get_score() 
60 
>>> s.score = 9999 
Traceback (most recent call last): 
  ... 
ValueError: score must between 0 ~ 100!

最经典的地方是对于私有变量的存储 , 例如密码

class User(Base): 
    ''' 
    模型属性设置 
    ''' 
    id = Column(Integer, primary_key=True) 
    nickname = Column(String(24), nullable=False) 
    _password = Column('password',String(64)) 
     
    @property 
    def password(self):  #加上 @property类似将其变为getattr 
        return self._password 
 
    @password.setter   #负责生成哈希加密 
    def password(self,raw): 
        self._password = generate_password_hash(raw)

@[email protected],负责把一个setter方法变成属性赋值,[email protected]性self._password,通过调用 xxx.password就可获取值

(5) setattr hasattr getattr 动态操作属性

hasattr(object, name)

判断一个对象里面是否有name属性或者name方法,返回BOOL值,有name特性返回True, 否则返回False。getattr(object, name[,default])

获取对象object的属性或者方法,如果存在打印出来,如果不存在,打印出默认值,默认值可选。
需要注意的是,如果是返回的对象的方法,返回的是方法的内存地址.

setattr(object, name, values)
给对象的属性赋值,若属性不存在,先创建再赋值

>>> hasattr(t, "name") #判断对象有name属性 
True 
>>> hasattr(t, "run")  #判断对象有run方法 
True 
 
>>> class test(): 
...     name="xiaohua" 
...     def run(self): 
...             return "HelloWord" 
... 
>>> t=test() 
>>> getattr(t, "name") #获取name属性,存在就打印出来。 
'xiaohua' 
>>> getattr(t, "run")  #获取run方法,存在就打印出方法的内存地址。 
<bound method test.run of <__main__.test instance at 0x0269C878>> 
>>> getattr(t, "age")  #获取一个不存在的属性。 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
AttributeError: test instance has no attribute 'age' 
>>> getattr(t, "age","18")  #若属性不存在,返回一个默认值 
'18' 
>>> 
 
>>> hasattr(t, "age")   #判断属性是否存在 
False 
>>> setattr(t, "age", "18")   #为属相赋值,并没有返回值 
>>> hasattr(t, "age")    #属性存在了 
True

例如我们有需求保存用户数据

user = User() 
user.name = form.name.data 
user.phone_number = form.name.data 
....

实际应用中常常综合用来判断类实例对象是否含有某属性值 , 存在就获取 ,不存在就设置

#attrs_dict以字典的形式存储了用户的信息 
def set_attrs(self, attrs_dict): 
        for key, value in attrs_dict.items(): 
            #判断用户是否含有该属性 
            if hasattr(self, key) and key != 'id': 
                #设置属性值 
                setattr(self, key, value)               

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/12192.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论