Scalaz(48)- scalaz-stream: 深入了解-Transducer: Process1-tee-wye详解编程语言

   在上一篇讨论里我们介绍了Source,它的类型款式是这样的:Process[F[_],O]。Source是通过await函数来产生数据流。await函数款式如下:

def await[F[_], A, O](req: F[A])(rcv: A => Process[F, O]): Process[F, O]  

await函数的作用是:运算F从外界数据源获取数据A,如:从数据库读取记录、从网络读取网页或读取键盘鼠标输入等。获取数据A后输入函数rcv来生成Process[F,O]类型。这是一种产生数据的数据源Source模式。有了数据源Source后我们可能需要对Source提供的数据O进行加工处理,这就是transducer的功能了。我们先看看Transducer的类型款式:

type Process1[-I,+O] = Process[Env[I,Any]#Is, O]

从类型参数来看transducer不会产生任何的副作用,它的作用应该是把接收到的数据元素I加工处理后转换成O类型数据输出。transducer不会主动产生任何数据而是被动接收输入数据I,所以Process1类型的await函数被称为await1,款式如下:

/** The `Process1` which awaits a single input, emits it, then halts normally. */ 
def await1[I]: Process1[I, I] = 
    receive1(emit) 
 
def receive1[I, O](rcv: I => Process1[I, O]): Process1[I, O] = 
    await(Get[I])(rcv)

首先可以看出await1就是await函数的特别版本:产生数据的F[A]被替换成了帮助compiler推导类型I的Get[I],也就是说await1不会主动产生数据,它的rcv是个lambda:需要提供给它一个I,它才会返回Process1[I,O]。我们来看看await1的用例:

1  import Process._ 
2  def multiplyBy(n: Int): Process1[Int,Int] = 
3     await1[Int].flatMap { i => emit(i * n) }.repeat 
4                                        //> multiplyBy: (n: Int)scalaz.stream.Process1[Int,Int] 
5  def addPosfix: Process1[Int,String] = 
6    receive1[Int,String]{ i => emit(i.toString + "!") }.repeat 
7                                        //> addPosfix: => scalaz.stream.Process1[Int,String]

可以看出无论await1或者receive1都在被动等待一个元素i来继续进行数据转换功能。我们可以用pipe把Process1连接到一个Source上,然后对Source产生的元素进行转换处理:

1  (range(11,16).toSource pipe multiplyBy(5) |> addPosfix).runLog.run 
2                                     //> res0: Vector[String] = Vector(55!, 60!, 65!, 70!, 75!)

我们也可以把一个普通函数lift成Process1:

1  import process1._ 
2  (range(11,16).toSource |> lift {(i: Int) => i * 5} |> addPosfix).runLog.run 
3                                      //> res1: Vector[String] = Vector(55!, 60!, 65!, 70!, 75!)

上面的|>是pipe符号。实际上我们可以直接对Source输出元素进行转换来达到同样目的:

1  range(11,16).toSource.flatMap { i => 
2   emit(i * 5) }.flatMap { i => 
3   emit(i.toString + "!") }.runLog.run       //> res1: Vector[String] = Vector(55!, 60!, 65!, 70!, 75!)

虽然用更直接的方法获得相同结果,但值得注意的是现在这个Source已经是一个特殊的版本了,附加在它上面的这些元素转换特性是无法分割的了。实际上pipe就是Process组合函数,我们用它来把Source和Transducer、Transducer与Transducer对接起来。这样我们就可以保证Source和Transducer都是功能单一的函数组件了。

只要连接上一个数据源,我们就可以对它发出的元素进行转换处理。这些transduce功能函数都在process1对象里:

 1 import process1._ 
 2  (range(1,6).toSource pipe take(2)) 
 3  .runLog.run                                      //> res2: Vector[Int] = Vector(1, 2) 
 4  (range(1,10).toSource |> filter {_ % 2 == 0 } 
 5   |> collect { 
 6     case 4 => "the number four" 
 7     case 5 => "the number five" 
 8     case 6 => "the number six" 
 9     case 100 => "the number one hundred" 
10     } 
11  ).runLog.run         //> res3: Vector[String] = Vector(the number four, the number six)

基本上所有对scala标准库List使用的函数都可以对Process1施用:

 1 (range(1,6).toSource 
 2   |> fold(Nil:List[Int]){ (b,a) => a :: b } 
 3  ).runLog.run                            //> res5: Vector[List[Int]] = Vector(List(5, 4, 3, 2, 1)) 
 4 (range(1,6).toSource 
 5   |> foldMap { List(_) } 
 6  ).runLog.run                            //> res6: Vector[List[Int]] = Vector(List(1, 2, 3, 4, 5)) 
 7 (range(1,6).toSource 
 8   |> foldMap { identity } 
 9  ).runLog.run                            //> res7: Vector[Int] = Vector(15) 
10 (range(1,6).toSource 
11   |> sum 
12  ).runLog.run                            //> res8: Vector[Int] = Vector(15) 
13 (range(1,6).toSource 
14   |> scan(0){(a,b) => a + b} 
15  ).runLog.run                            //> res9: Vector[Int] = Vector(0, 1, 3, 6, 10, 15)

我们也可以把一串现成的元素插入一个Process1:

1  (range(1,6).toSource 
2   |> feed(6 to 10)(lift(identity)) 
3   ).runLog.run                         //> res10: Vector[Int] = Vector(6, 7, 8, 9, 10, 1, 2, 3, 4, 5) 
4  (range(1,6).toSource 
5   |> feed(6 to 10)(lift(identity)) 
6   |> foldMap {identity} 
7   ).runLog.run                         //> res11: Vector[Int] = Vector(55)

从上面的示范可以得出:Process1只是被动接受从上游发过来的元素,我们必须把它和上游接驳后才能发生作用,pipe就是这样一个连接器。同样原理:我们也可以用tee来连接两个数据源,然后把两个源头数据合并形成一个按左右顺序的数据流。tee的类型定义如下:

/** 
   * A stream transducer that can read from one of two inputs, 
   * the 'left' (of type `I`) or the 'right' (of type `I2`). 
   * `Process1[I,O] <: Tee[I,I2,O]`. 
   */ 
  type Tee[-I,-I2,+O] = Process[Env[I,I2]#T, O]

我们看到tee的类型款式很像Process1,只不过有I1,i2两个输入。如果Process1的驱动函数是await1即receive1,那么tee的就是receiveL和receiveR了:

/** 
   * Awaits to receive input from Left side, 
   * than if that request terminates with `End` or is terminated abnormally 
   * runs the supplied `continue` or `cleanup`. 
   * Otherwise `rcv` is run to produce next state. 
   * 
   * If  you don't need `continue` or `cleanup` use rather `awaitL.flatMap` 
   */ 
  def receiveL[I, I2, O](rcv: I => Tee[I, I2, O]): Tee[I, I2, O] = 
    await[Env[I, I2]#T, I, O](L)(rcv) 
 
  /** 
   * Awaits to receive input from Right side, 
   * than if that request terminates with `End` or is terminated abnormally 
   * runs the supplied continue. 
   * Otherwise `rcv` is run to produce next state. 
   * 
   * If  you don't need `continue` or `cleanup` use rather `awaitR.flatMap` 
   */ 
  def receiveR[I, I2, O](rcv: I2 => Tee[I, I2, O]): Tee[I, I2, O] = 
    await[Env[I, I2]#T, I2, O](R)(rcv)

与await1同样,receiveL和receiveR都是await的特别版。其中L,R和上面await1的Get[I]都在Env类里: 

case class Env[-I, -I2]() { 
    sealed trait Y[-X] { 
      def tag: Int 
      def fold[R](l: => R, r: => R, both: => R): R 
    } 
    sealed trait T[-X] extends Y[X] 
    sealed trait Is[-X] extends T[X] 
    case object Left extends Is[I] { 
      def tag = 0 
      def fold[R](l: => R, r: => R, both: => R): R = l 
    } 
    case object Right extends T[I2] { 
      def tag = 1 
      def fold[R](l: => R, r: => R, both: => R): R = r 
    } 
    case object Both extends Y[ReceiveY[I, I2]] { 
      def tag = 2 
      def fold[R](l: => R, r: => R, both: => R): R = both 
    } 
  } 
 
 
  private val Left_  = Env[Any, Any]().Left 
  private val Right_ = Env[Any, Any]().Right 
  private val Both_  = Env[Any, Any]().Both 
 
  def Get[I]: Env[I, Any]#Is[I] = Left_ 
  def L[I]: Env[I, Any]#Is[I] = Left_ 
  def R[I2]: Env[Any, I2]#T[I2] = Right_ 
  def Both[I, I2]: Env[I, I2]#Y[ReceiveY[I, I2]] = Both_

L[I1],R[I2],Get[I]都没什么实际作用,它们是为了compiler类型推导而设。tee的顺序特性是指我们可以用receiveL,receiveR来指定从那边输入元素。可以想象tee的主要作用应该是合并两个数据源发出的元素。tee的数据合并操作方式基本上是按下面这个tee函数款式进行的:

/** 
   * Use a `Tee` to interleave or combine the outputs of `this` and 
   * `p2`. This can be used for zipping, interleaving, and so forth. 
   * Nothing requires that the `Tee` read elements from each 
   * `Process` in lockstep. It could read fifty elements from one 
   * side, then two elements from the other, then combine or 
   * interleave these values in some way, etc. 
   * 
   * If at any point the `Tee` awaits on a side that has halted, 
   * we gracefully kill off the other side, then halt. 
   * 
   * If at any point `t` terminates with cause `c`, both sides are killed, and 
   * the resulting `Process` terminates with `c`. 
   */ 
  final def tee[F2[x] >: F[x], O2, O3](p2: Process[F2, O2])(t: Tee[O, O2, O3]): Process[F2, O3]

用伪代码表示就是:leftProcess.tee(rightProcess)(teeFunction): newProcess

以下是几个常用的tee功能函数:

 /** Alternate emitting elements from `this` and `p2`, starting with `this`. */ 
  def interleave[F2[x] >: F[x], O2 >: O](p2: Process[F2, O2]): Process[F2, O2] = 
    this.tee(p2)(scalaz.stream.tee.interleave[O2]) 
 
  /** Call `tee` with the `zipWith` `Tee[O,O2,O3]` defined in `tee.scala`. */ 
  def zipWith[F2[x] >: F[x], O2, O3](p2: Process[F2, O2])(f: (O, O2) => O3): Process[F2, O3] = 
    this.tee(p2)(scalaz.stream.tee.zipWith(f)) 
 
  /** Call `tee` with the `zip` `Tee[O,O2,O3]` defined in `tee.scala`. */ 
  def zip[F2[x] >: F[x], O2](p2: Process[F2, O2]): Process[F2, (O, O2)] = 
    this.tee(p2)(scalaz.stream.tee.zip) 
 
  /** 
   * When `condition` is `true`, lets through any values in `this` process, otherwise blocks 
   * until `condition` becomes true again. Note that the `condition` is checked before 
   * each and every read from `this`, so `condition` should return very quickly or be 
   * continuous to avoid holding up the output `Process`. Use `condition.forwardFill` to 
   * convert an infrequent discrete `Process` to a continuous one for use with this 
   * function. 
   */ 
  def when[F2[x] >: F[x], O2 >: O](condition: Process[F2, Boolean]): Process[F2, O2] = 
    condition.tee(this)(scalaz.stream.tee.when) 
 /** 
   * Halts this `Process` as soon as `condition` becomes `true`. Note that `condition` 
   * is checked before each and every read from `this`, so `condition` should return 
   * very quickly or be continuous to avoid holding up the output `Process`. Use 
   * `condition.forwardFill` to convert an infrequent discrete `Process` to a 
   * continuous one for use with this function. 
   */ 
  def until[F2[x] >: F[x], O2 >: O](condition: Process[F2, Boolean]): Process[F2, O2] = 
    condition.tee(this)(scalaz.stream.tee.until)

下面是它们的具体实现方法:

/** A `Tee` which ignores all input from left. */ 
  def passR[I2]: Tee[Any, I2, I2] = awaitR[I2].repeat 
 
  /** A `Tee` which ignores all input from the right. */ 
  def passL[I]: Tee[I, Any, I] = awaitL[I].repeat 
 
  /** Echoes the right branch until the left branch becomes `true`, then halts. */ 
  def until[I]: Tee[Boolean, I, I] = 
    awaitL[Boolean].flatMap(kill => if (kill) halt else awaitR[I] ++ until) 
 
  /** Echoes the right branch when the left branch is `true`. */ 
  def when[I]: Tee[Boolean, I, I] = 
    awaitL[Boolean].flatMap(ok => if (ok) awaitR[I] ++ when else when) 
 
  /** Defined as `zipWith((_,_))` */ 
  def zip[I, I2]: Tee[I, I2, (I, I2)] = zipWith((_, _)) 
 
  /** Defined as `zipWith((arg,f) => f(arg)` */ 
  def zipApply[I,I2]: Tee[I, I => I2, I2] = zipWith((arg,f) => f(arg)) 
 
  /** A version of `zip` that pads the shorter stream with values. */ 
  def zipAll[I, I2](padI: I, padI2: I2): Tee[I, I2, (I, I2)] = 
    zipWithAll(padI, padI2)((_, _))

我们用以下例子来示范这些函数的使用方法: 

 1 import tee._ 
 2  val source = range(1,6).toSource                 //> source  : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Append(Halt(End),Vector(<function1>)) 
 3  val seq = emitAll(Seq("a","b","c"))              //> seq  : scalaz.stream.Process0[String] = Emit(List(a, b, c)) 
 4  val signalw = Process(true,true,false,true)      //> signalw  : scalaz.stream.Process0[Boolean] = Emit(WrappedArray(true, true, false, true)) 
 5  val signalu = Process(false,true,false,true)     //> signalu  : scalaz.stream.Process0[Boolean] = Emit(WrappedArray(false, true,false, true)) 
 6   
 7  source.tee(seq)(interleave).runLog.run           //> res12: Vector[Any] = Vector(1, a, 2, b, 3, c) 
 8  (source interleave seq).runLog.run               //> res13: Vector[Any] = Vector(1, a, 2, b, 3, c) 
 9  signalu.tee(source)(until).runLog.run            //> res14: Vector[Int] = Vector(1) 
10  signalw.tee(source)(when).runLog.run             //> res15: Vector[Int] = Vector(1, 2, 3) 
11  source.tee(seq)(passL).runLog.run                //> res16: Vector[Int] = Vector(1, 2, 3, 4, 5) 
12  source.tee(seq)(passR).runLog.run                //> res17: Vector[String] = Vector(a, b, c) 
13  (source zip seq).runLog.run                      //> res18: Vector[(Int, String)] = Vector((1,a), (2,b), (3,c)) 
14  (seq zip source).runLog.run                      //> res19: Vector[(String, Int)] = Vector((a,1), (b,2), (c,3)) 
15  (source.zipWith(seq){(a,b) => a.toString + b}).runLog.run 
16                                                   //> res20: Vector[String] = Vector(1a, 2b, 3c)

与Process1同样,我们也可以对tee注入一串元素,这次我们用feedL和feedR:

/** Feed a sequence of inputs to the left side of a `Tee`. */ 
  def feedL[I, I2, O](i: Seq[I])(p: Tee[I, I2, O]): Tee[I, I2, O] = {...} 
 /** Feed a sequence of inputs to the right side of a `Tee`. */ 
  def feedR[I, I2, O](i: Seq[I2])(p: Tee[I, I2, O]): Tee[I, I2, O] = {...}

用例:(好像只能用feedL。不过已经足够了。我们的目的是把一串现成的元素插入形成的流,无论从左或右都无所谓)

1 val ltee = tee.feedL(Seq(1,2,3))(id[Int])        //> ltee  : scalaz.stream.Tee[Int,Any,Int] = Append(Emit(Vector(1, 2)),Vector(<function1>)) 
2  halt.tee[Task,Int,Int](halt)(ltee).runLog.run    //> res21: Vector[Int] = Vector(1, 2, 3) 
3  source.tee[Task,Int,Int](halt)(ltee).runLog.run  //> res22: Vector[Int] = Vector(1, 2, 3, 1, 2, 3, 4, 5)

还有一种多源头元素合并方式是wye。wye与tee相似:都是连接到左右两个数据源头。与tee不同的是通过wye合并的数据流是不确定顺序的。wye从源头接收元素的方式不按照左右顺序而是随机的。特别是当左右两个源头产生数据的速度不同时wye采取先到先收的策略,因而增加了接收顺序的不确定性。与tee相同:wye的操作基本上是在wye函数的定义上:

/** 
   * Like `tee`, but we allow the `Wye` to read non-deterministically 
   * from both sides at once. 
   * 
   * If `y` is in the state of awaiting `Both`, this implementation 
   * will continue feeding `y` from either left or right side, 
   * until either it halts or _both_ sides halt. 
   * 
   * If `y` is in the state of awaiting `L`, and the left 
   * input has halted, we halt. Likewise for the right side. 
   * 
   * For as long as `y` permits it, this implementation will _always_ 
   * feed it any leading `Emit` elements from either side before issuing 
   * new `F` requests. More sophisticated chunking and fairness 
   * policies do not belong here, but should be built into the `Wye` 
   * and/or its inputs. 
   * 
   * The strategy passed in must be stack-safe, otherwise this implementation 
   * will throw SOE. Preferably use one of the `Strategys.Executor(es)` based strategies 
   */ 
  final def wye[O2, O3](p2: Process[Task, O2])(y: Wye[O, O2, O3])(implicit S: Strategy): Process[Task, O3] = 
    scalaz.stream.wye[O, O2, O3](self, p2)(y)(S)

wye有几个重要的数据合并操作函数:

/** 
   * After each input, dynamically determine whether to read from the left, right, or both, 
   * for the subsequent input, using the provided functions `f` and `g`. The returned 
   * `Wye` begins by reading from the left side and is left-biased--if a read of both branches 
   * returns a `These(x,y)`, it uses the signal generated by `f` for its next step. 
   */ 
  def dynamic[I,I2](f: I => wye.Request, g: I2 => wye.Request): Wye[I,I2,ReceiveY[I,I2]] = { 
    import scalaz.stream.wye.Request._ 
    def go(signal: wye.Request): Wye[I,I2,ReceiveY[I,I2]] = signal match { 
      case L => receiveL { i => emit(ReceiveL(i)) ++ go(f(i)) } 
      case R => receiveR { i2 => emit(ReceiveR(i2)) ++ go(g(i2)) } 
      case Both => receiveBoth { 
        case [email protected](i) => emit(t) ++ go(f(i)) 
        case [email protected](i2) => emit(t) ++ go(g(i2)) 
        case HaltOne(rsn) => Halt(rsn) 
      } 
    } 
    go(L) 
  } 
/** 
   * Non-deterministic interleave of both inputs. Emits values whenever either 
   * of the inputs is available. 
   * 
   * Will terminate once both sides terminate. 
   */ 
  def merge[I]: Wye[I,I,I] = 
    receiveBoth { 
      case ReceiveL(i) => emit(i) ++ merge 
      case ReceiveR(i) => emit(i) ++ merge 
      case HaltL(End)   => awaitR.repeat 
      case HaltR(End)   => awaitL.repeat 
      case HaltOne(rsn) => Halt(rsn) 
    } 
/** 
   * Nondeterminstic interleave of both inputs. Emits values whenever either 
   * of the inputs is available. 
   */ 
  def either[I,I2]: Wye[I,I2,I // I2] = 
    receiveBoth { 
      case ReceiveL(i) => emit(left(i)) ++ either 
      case ReceiveR(i) => emit(right(i)) ++ either 
      case HaltL(End)     => awaitR[I2].map(right).repeat 
      case HaltR(End)     => awaitL[I].map(left).repeat 
      case [email protected](rsn) => Halt(rsn) 
    }

我们用一些例子来示范它们的用法:

1 import wye._ 
2  source.wye(seq)(either).runLog.run               //> res23: Vector[scalaz.//[Int,String]] = Vector(-//(1), //-(a), //-(b), //-(c), -//(2), -//(3), -//(4), -//(5)) 
3  (source either seq).runLog.run                   //> res24: Vector[scalaz.//[Int,String]] = Vector(-//(1), //-(a), //-(b), //-(c), -//(2), -//(3), -//(4), -//(5)) 
4  source.wye(seq)(merge).runLog.run                //> res25: Vector[Any] = Vector(1, a, b, c, 2, 3, 4, 5) 
5  (source merge seq).runLog.run                    //> res26: Vector[Any] = Vector(1, a, b, c, 2, 3, 4, 5)

实际上我们也可以实现某些程度的接收顺序。我们可以用dynamic函数来要求wye从左或右提供数据元素:

1  val w = dynamic((r:Int) => Request.R, (l:String) => Request.L) 
2                                                   //> w  : scalaz.stream.Wye[Int,String,scalaz.stream.ReceiveY[Int,String]] = Await(Left,<function1>,<function1>) 
3  source.wye(seq)(w).runLog.run                    //> res27: Vector[scalaz.stream.ReceiveY[Int,String]] = Vector(ReceiveL(1), ReceiveR(a), ReceiveL(2), ReceiveR(b), ReceiveL(3), ReceiveR(c), ReceiveL(4)) 
4  val fw = dynamic((r: Int) => if (r % 3 == 0) { 
5    Request.R } else {Request.L}, (l:String) => Request.L) 
6                                                   //> fw  : scalaz.stream.Wye[Int,String,scalaz.stream.ReceiveY[Int,String]] = Await(Left,<function1>,<function1>) 
7  source.wye(seq)(fw).runLog.run                   //> res28: Vector[scalaz.stream.ReceiveY[Int,String]] = Vector(ReceiveL(1), ReceiveL(2), ReceiveL(3), ReceiveR(a), ReceiveL(4), ReceiveL(5))

与tee同样:我们可以用feedL来把一串现成的元素插入合并流里:

1  val lwye = wye.feedL(Seq(1,2,3))(id[Int])        //> lwye  : scalaz.stream.Wye[Int,Any,Int] = Append(Emit(Vector(1, 2)),Vector(< 
2                                                   //| function1>)) 
3  halt.wye(halt)(lwye).runLog.run                  //> res29: Vector[Int] = Vector(1, 2, 3) 
4  source.wye(halt)(lwye).runLog.run                //> res30: Vector[Int] = Vector(1, 2, 3, 1, 2, 3, 4, 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/12900.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论