Scalaz(47)- scalaz-stream: 深入了解-Source详解编程语言

   scalaz-stream库的主要设计目标是实现函数式的I/O编程(functional I/O)。这样用户就能使用功能单一的基础I/O函数组合成为功能完整的I/O程序。还有一个目标就是保证资源的安全使用(resource safety):使用scalaz-stream编写的I/O程序能确保资源的安全使用,特别是在完成一项I/O任务后自动释放所有占用的资源包括file handle、memory等等。我们在上一篇的讨论里笼统地解释了一下scalaz-stream核心类型Process的基本情况,不过大部分时间都用在了介绍Process1这个通道类型。在这篇讨论里我们会从实际应用的角度来介绍整个scalaz-stream链条的设计原理及应用目的。我们提到过Process具有Emit/Await/Halt三个状态,而Append是一个链接stream节点的重要类型。先看看这几个类型在scalaz-stream里的定义:

case class Emit[+O](seq: Seq[O]) extends HaltEmitOrAwait[Nothing, O] with EmitOrAwait[Nothing, O] 
 
case class Await[+F[_], A, +O]( 
    req: F[A] 
    , rcv: (EarlyCause // A) => Trampoline[Process[F, O]] @uncheckedVariance 
    , preempt : A => Trampoline[Process[F,Nothing]] @uncheckedVariance = (_:A) => Trampoline.delay(halt:Process[F,Nothing]) 
    ) extends HaltEmitOrAwait[F, O] with EmitOrAwait[F, O]  
 
case class Halt(cause: Cause) extends HaltEmitOrAwait[Nothing, Nothing] with HaltOrStep[Nothing, Nothing] 
 
case class Append[+F[_], +O]( 
    head: HaltEmitOrAwait[F, O] 
    , stack: Vector[Cause => Trampoline[Process[F, O]]] @uncheckedVariance 
    ) extends Process[F, O] 

我们看到Process[F,O]被包嵌在Trampoline类型里,所以Process是通过Trampoline来实现函数结构化的,可以有效解决大量stream运算堆栈溢出问题(StackOverflowError)。撇开Trampoline等复杂的语法,以上类型可以简化成以下理论结构:

 1 rait Process[+F[_],+O] 
 2 case object Cause 
 3  
 4 case class Emit[O](out: O) extends Process[Nothing, O]  
 5  
 6 case class Halt(cause: Cause) extends Process[Nothing,Nothing] 
 7  
 8 case class Await[+F[_],E,+O]( 
 9   req: F[E], 
10   rcv: E => Process[F,O], 
11   preempt: E => Process[F,Nothing] = Halt) extends Process[F,O] 
12  
13 case class Append[+F[_],+O]( 
14   head: Process[F,O], 
15   stack: Vector[Cause => Process[F,O]]) extends Process[F,O]  

我们来说明一下:

Process[F[_],O]:从它的类型可以推断出scalaz-stream可以在输出O类型元素的过程中进行可能含副作用的F类型运算。

Emit[O](out: O):发送一个O类型元素;不可能进行任何附加运算

Halt(cause: Cause):停止发送;cause是停止的原因:End-完成发送,Err-出错终止,Kill-强行终止

Await[+F[_],E,+O]:这个是运算流的核心Process状态。先进行F运算req,得出结果E后输入函数rcv转换到下一个Process状态,完成后执行preempt这个事后清理函数。这不就是个flatMap函数结构版嘛。值得注意的是E类型是个内部类型,由F运算产生后输入rcv后就不再引用了。我们可以在preepmt函数里进行资源释放。如果我们需要构建一个运算流,看来就只有使用这个Await类型了

Append[+F[_],+O]:Append是一个Process[F,O]链接类型。首先它不但担负了元素O的传送,更重要的是它还可以把上一节点的F运算传到下一个节点。这样才能在下面节点时运行对上一个节点的事后处置函数(finalizer)。Append可以把多个节点结成一个大节点:head是第一个节点,stack是一串函数,每个函数接受上一个节点完成状态后运算出下一个节点状态

一个完整的scalaz-stream由三个类型的节点组成Source(源点)/Transducer(传换点)/Sink(终点)。节点间通过Await或者Append来链接。我们再来看看Source/Transducer/Sink的类型款式:

上游:Source       >>> Process0[O]   >>> Process[F[_],O]

中游:Transduce    >>> Process1[I,O] 

下游:Sink/Channel >>> Process[F[_],O => F[Unit]], Channel >>> Process[F[_],I => F[O]]

我们可以用一个文件处理流程来描述完整scalaz-stream链条的作用:

Process[F[_],O],用F[O]方式读取文件中的O值,这时F是有副作用的 

>>> Process[I,O],I代表从文件中读取的原始数据,O代表经过筛选、处理产生的输出数据

>>> O => F[Unit]是一个不返回结果的函数,代表对输入的O类型数据进行F运算,如把O类型数据存写入一个文件

/>> I => F[O]是个返回结果的函数,对输入I进行F运算后返回O,如把一条记录写入数据库后返回写入状态

以上流程简单描述:从文件中读出数据->加工处理读出数据->写入另一个文件。虽然从描述上看起来很简单,但我们的目的是资源安全使用:无论在任何终止情况下:正常读写、中途强行停止、出错终止,scalaz-stream都会主动关闭开启的文件、停止使用的线程、释放占用的内存等其它资源。这样看来到不是那么简单了。我们先试着分析Source/Transducer/Sink这几种类型的作用:

1 import Process._ 
2 emit(0)                        //> res0: scalaz.stream.Process0[Int] = Emit(Vector(0)) 
3 emitAll(Seq(1,2,3))            //> res1: scalaz.stream.Process0[Int] = Emit(List(1, 2, 3)) 
4 Process(1,2,3)                 //> res2: scalaz.stream.Process0[Int] = Emit(WrappedArray(1, 2, 3)) 
5 Process()                      //> res3: scalaz.stream.Process0[Nothing] = Emit(List())

以上都是Process0的构建方式,也算是数据源。但它们只是代表了内存中的一串值,对我们来说没什么意义,因为我们希望从外设获取这些值,比如从文件或者数据库里读取数据,也就是说需要F运算效果。Process0[O] >>> Process[Nothing,O],而我们需要的是Process[F,O]。那么我们这样写如何呢?

1 val p: Process[Task,Int] = emitAll(Seq(1,2,3))     
2    //> p  : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Emit(List(1, 2, 3)) 
3  
4 emitAll(Seq(1,2,3)).toSource 
5    //> res4: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Emit(List(1, 2, 3)) 
6                                                   

类型倒是匹配了,但表达式Emit(…)里没有任何Task的影子,这个无法满足我们对Source的需要。看来只有以下这种方式了:

1 await(Task.delay{3})(emit)                         
2 //> res5: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await([email protected],<function1>,<function1>) 
3 eval(Task.delay{3})                                
4 //> res6: scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await([email protected],<function1>,<function1>)

现在不但类型匹配,而且表达式里还包含了Task运算。我们通过Task.delay可以进行文件读取等带有副作用的运算,这是因为Await将会运行req:F[E] >>> Task[Int]。这正是我们需要的Source。那我们能不能用这个Source来发出一串数据呢?

 1 def emitSeq[A](xa: Seq[A]):Process[Task,A] = 
 2   xa match { 
 3     case h :: t => await(Task.delay {h})(emit) ++ emitSeq(t) 
 4     case Nil => halt 
 5   }                                     //> emitSeq: [A](xa: Seq[A])scalaz.stream.Process[scalaz.concurrent.Task,A] 
 6 val es1 = emitSeq(Seq(1,2,3))           //> es1  : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Append(Await([email protected],<function1>,<function1>),Vector(<function1>)) 
 7 val es2 = emitSeq(Seq("a","b","c"))     //> es2  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Append(Await( 
 8 [email protected],<function1>,<function1>),Vector(<function1>)) 
 9 es1.runLog.run                          //> res7: Vector[Int] = Vector(1, 2, 3) 
10 es2.runLog.run                          //> res8: Vector[String] = Vector(a, b, c)

以上示范中我们用await运算了Task,然后返回了Process[Task,?],一个可能带副作用运算的Source。实际上我们在很多情况下都需要从外部的源头用Task来获取一些数据,通常这些数据源都对数据获取进行了异步(asynchronous)运算处理,然后通过callback方式来提供这些数据。我们可以用Task.async函数来把这些callback函数转变成Task,下一步我们只需要用Process.eval或者await就可以把这个Task升格成Process[Task,?]。我们先看个简单的例子:假如我们用scala.concurrent.Future来进行异步数据读取,可以这样把Future转换成Process:

 1 def getData(dbName: String): Task[String] = Task.async { cb => 
 2    import scala.concurrent._ 
 3    import scala.concurrent.ExecutionContext.Implicits.global 
 4    import scala.util.{Success,Failure} 
 5    Future { s"got data from $dbName" }.onComplete { 
 6      case Success(a) => cb(a.right) 
 7      case Failure(e) => cb(e.left) 
 8    } 
 9 }                                        //> getData: (dbName: String)scalaz.concurrent.Task[String] 
10 val procGetData = eval(getData("MySQL")) //> procGetData  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Await([email protected],<function1>,<function1>) 
11 procGetData.runLog.run                   //> res9: Vector[String] = Vector(got data from MySQL)

我们也可以把java的callback转变成Task:

 1   import com.ning.http.client._ 
 2   val asyncHttpClient = new AsyncHttpClient()     //> asyncHttpClient  : com.ning.http.client.AsyncHttpClient = [email protected] 
 3   def get(s: String): Task[Response] = Task.async[Response] { callback => 
 4     asyncHttpClient.prepareGet(s).execute( 
 5       new AsyncCompletionHandler[Unit] { 
 6         def onCompleted(r: Response): Unit = callback(r.right) 
 7  
 8         def onError(e: Throwable): Unit = callback(e.left) 
 9       } 
10     ) 
11   }                 //> get: (s: String)scalaz.concurrent.Task[com.ning.http.client.Response] 
12   val prcGet = Process.eval(get("http://sina.com")) 
13                     //> prcGet  : scalaz.stream.Process[scalaz.concurrent.Task,com.ning.http.client.Response] = Await([email protected],<function1>,<function1>) 
14   prcGet.run.run    //> 12:25:27.852 [New I/O worker #1] DEBUG c.n.h.c.p.n.r.NettyConnectListener -Request using non cached Channel '[id: 0x23fa1307, /192.168.200.3:50569 =>sina.com/66.102.251.33:80]':

如果直接按照scalaz Task callback的类型款式 def async(callback:(Throwable // Unit) => Unit):

 1   def read(callback: (Throwable // Array[Byte]) => Unit): Unit = ??? 
 2                                  //> read: (callback: scalaz.//[Throwable,Array[Byte]] => Unit)Unit 
 3   val t: Task[Array[Byte]] = Task.async(read)     //> t  : scalaz.concurrent.Task[Array[Byte]] = [email protected] 
 4   val t2: Task[Array[Byte]] = for { 
 5     bytes <- t 
 6     moarBytes <- t 
 7   } yield (bytes ++ moarBytes)          //> t2  : scalaz.concurrent.Task[Array[Byte]] = [email protected] 
 8   val prct2 = Process.eval(t2)          //> prct2  : scalaz.stream.Process[scalaz.concurrent.Task,Array[Byte]] = Await([email protected],<function1>,<function1>) 
 9  
10   def asyncRead(succ: Array[Byte] => Unit, fail: Throwable => Unit): Unit = ??? 
11                           //> asyncRead: (succ: Array[Byte] => Unit, fail: Throwable => Unit)Unit 
12   val t3: Task[Array[Byte]] = Task.async { callback => 
13      asyncRead(b => callback(b.right), err => callback(err.left)) 
14   }                      //> t3  : scalaz.concurrent.Task[Array[Byte]] = [email protected] 
15   val t4: Task[Array[Byte]] = t3.flatMap(b => Task(b)) 
16                          //> t4  : scalaz.concurrent.Task[Array[Byte]] = [email protected] 
17   val prct4 = Process.eval(t4)      //> prct4  : scalaz.stream.Process[scalaz.concurrent.Task,Array[Byte]] = Await([email protected],<function1>,<function1>)

我们也可以用timer来产生Process[Task,A]:

1   import scala.concurrent.duration._ 
2   implicit val scheduler = java.util.concurrent.Executors.newScheduledThreadPool(3) 
3                   //> scheduler  : java.util.concurrent.ScheduledExecutorService = [email protected][Running, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0] 
4   val fizz = time.awakeEvery(3.seconds).map(_ => "fizz") 
5                   //> fizz  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Await([email protected],<function1>,<function1>) 
6   val fizz3 = fizz.take(3)   //> fizz3  : scalaz.stream.Process[scalaz.concurrent.Task,String] = Append(Halt(End),Vector(<function1>)) 
7   fizz3.runLog.run           //> res9: Vector[String] = Vector(fizz, fizz, fizz)

Queue、Top和Signal都可以作为带副作用数据源的构建器。我们先看看Queue是如何产生数据源的:

 1   type BigStringResult = String 
 2   val qJobResult = async.unboundedQueue[BigStringResult] 
 3                          //> qJobResult  : scalaz.stream.async.mutable.Queue[demo.ws.blogStream.BigStringResult] = [email protected] 
 4   def longGet(jobnum: Int): BigStringResult = { 
 5     Thread.sleep(2000) 
 6     s"Some large data sets from job#${jobnum}" 
 7   }                      //> longGet: (jobnum: Int)demo.ws.blogStream.BigStringResult 
 8        
 9 //  multi-tasking 
10     val start = System.currentTimeMillis()        //> start  : Long = 1468556250797 
11     Task.fork(qJobResult.enqueueOne(longGet(1))).unsafePerformAsync{case _ => ()} 
12     Task.fork(qJobResult.enqueueOne(longGet(2))).unsafePerformAsync{case _ => ()} 
13     Task.fork(qJobResult.enqueueOne(longGet(3))).unsafePerformAsync{case _ => ()} 
14     val timemill = System.currentTimeMillis() - start 
15                                                   //> timemill  : Long = 17 
16     Thread.sleep(3000) 
17     qJobResult.close.run 
18  val bigData = { 
19  //multi-tasking 
20     val j1 = qJobResult.dequeue 
21     val j2 = qJobResult.dequeue 
22     val j3 = qJobResult.dequeue 
23     for { 
24      r1 <- j1 
25      r2 <- j2 
26      r3 <- j3 
27     } yield r1 + ","+ r2 + "," + r3 
28   }                       //> bigData  : scalaz.stream.Process[[x]scalaz.concurrent.Task[x],String] = Await([email protected],<function1>,<function1>) 
29    
30   bigData.runLog.run      //> res9: Vector[String] = Vector(Some large data sets from job#2,Some large data sets from job#3,Some large data sets from job#1)

再看看Topic示范:

 1 import scala.concurrent._ 
 2   import scala.concurrent.duration._ 
 3   import scalaz.stream.async.mutable._ 
 4   import scala.concurrent.ExecutionContext.Implicits.global 
 5   val sharedData: Topic[BigStringResult] = async.topic() 
 6        //> sharedData  : scalaz.stream.async.mutable.Topic[demo.ws.blogStream.BigStringResult] = [email protected] 
 7   val subscriber = sharedData.subscribe.runLog    //> subscriber  : scalaz.concurrent.Task[Vector[demo.ws.blogStream.BigStringResult]] = [email protected] 
 8   val otherThread = future { 
 9     subscriber.run // Added this here - now subscriber is really attached to the topic 
10   }                //> otherThread  : scala.concurrent.Future[Vector[demo.ws.blogStream.BigStringResult]] = List() 
11   // Need to give subscriber some time to start up. 
12   // I doubt you'd do this in actual code. 
13  
14   // topics seem more useful for hooking up things like 
15   // sensors that produce a continual stream of data, 
16  
17   // and where individual values can be dropped on 
18   // floor. 
19   Thread.sleep(100) 
20  
21   sharedData.publishOne(longGet(1)).run // don't just call publishOne; need to run the resulting task 
22   sharedData.close.run // Don't just call close; need to run the resulting task 
23  
24   // Need to wait for the output 
25   val result = Await.result(otherThread, Duration.Inf) 
26        //> result  : Vector[demo.ws.blogStream.BigStringResult] = Vector(Some large data sets from job#1)

以上对可能带有副作用的Source的各种产生方法提供了解释和示范。scalaz-stream的其他类型节点将在下面的讨论中深入介绍。

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/12901.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论