Fast Power详解编程语言

Source

计算 a^n % b,其中a,b和n都是32位的非负整数

题解

数学题,考察整数求模的一些特性,不知道这个特性的话此题一时半会解不出来,本题中利用的关键特性为:

(a * b) % p = ((a % p) * (b % p)) % p

即 a 与 b 的乘积模 p 的值等于 a, b 分别模 p 相乘后再模 p 的值,只能帮你到这儿了,不看以下的答案先想想知道此关系后如何解这道题。

首先不太可能先把 a^n 具体值求出来,太大了… 所以利用以上求模公式,可以改写 a^n 为:

a^n = a^n/2⋅a^n/2 = a^n/4⋅a^n/4⋅a^n/4⋅a^n/4 =…

至此递归模型建立。

C++

class Solution { 
public: 
    /* 
     * @param a, b, n: 32bit integers 
     * @return: An integer 
     */ 
    int fastPower(int a, int b, int n) { 
        if (1 == n) { 
            return a % b; 
        } else if (0 == n) { 
            // do not use 1 instead (1 % b)! b = 1 
            return 1 % b; 
        } else if (0 > n) { 
            return -1; 
        } 
 
        // (a * b) % p = ((a % p) * (b % p)) % p 
        // use long long to prevent overflow 
        long long product = fastPower(a, b, n / 2); 
        product = (product * product) % b; 
        if (1 == n % 2) { 
            product = (product * a) % b; 
        } 
 
        // cast long long to int 
        return (int) product; 
    } 
};

Java

class Solution { 
    /* 
     * @param a, b, n: 32bit integers 
     * @return: An integer 
     */ 
    public int fastPower(int a, int b, int n) { 
        if (n == 1) { 
            return a % b; 
        } else if (n == 0) { 
            return 1 % b; 
        } else if (n < 0) { 
            return -1; 
        } 
 
        // (a * b) % p = ((a % p) * (b % p)) % p 
        // use long to prevent overflow 
        long product = fastPower(a, b, n / 2); 
        product = (product * product) % b; 
        if (n % 2 == 1) { 
            product = (product * a) % b; 
        } 
 
        // cast long to int 
        return (int) product; 
    } 
};

源码分析

分三种情况讨论 n 的值,需要特别注意的是n == 0,虽然此时 a^0 的值为1,但是不可直接返回1,因为b == 1时应该返回0,故稳妥的写法为返回1 % b.

递归模型中,需要注意的是要分 n 是奇数还是偶数,奇数的话需要多乘一个 a, 保存乘积值时需要使用long型防止溢出,最后返回时强制转换回int

复杂度分析

使用了临时变量product,空间复杂度为 O(1), 递归层数约为 logn, 时间复杂度为 O(logn), 栈空间复杂度也为 O(logn).

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/20642.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论