Problem
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return itsindex, otherwise return -1.
You may assume no duplicate exists in the array.
Example
For [4, 5, 1, 2, 3]
and target=1
, return 2
.
For [4, 5, 1, 2, 3]
and target=0
, return -1
.
Challenge
O(logN) time
题解 – 找到有序数组
对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。
对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。刚开始做这道题时可能会去比较target
和A[mid]
, 但分析起来异常复杂。
**该题较为巧妙的地方在于如何找出旋转数组中的局部有序数组,并使用二分搜索解之。
**结合实际数组在纸上分析较为方便。
C++:
class Solution { /** * param A : an integer ratated sorted array * param target : an integer to be searched * return : an integer */ public: int search(vector<int> &A, int target) { if (A.empty()) { return -1; } vector<int>::size_type start = 0; vector<int>::size_type end = A.size() - 1; vector<int>::size_type mid; while (start + 1 < end) { mid = start + (end - start) / 2; if (target == A[mid]) { return mid; } if (A[start] < A[mid]) { // situation 1, numbers between start and mid are sorted if (A[start] <= target && target < A[mid]) { end = mid; } else { start = mid; } } else { // situation 2, numbers between mid and end are sorted if (A[mid] < target && target <= A[end]) { start = mid; } else { end = mid; } } } if (A[start] == target) { return start; } if (A[end] == target) { return end; } return -1; } };
Java:
public class Solution { /** *@param A : an integer rotated sorted array *@param target : an integer to be searched *return : an integer */ public int search(int[] A, int target) { if (A == null || A.length == 0) return -1; int lb = 0, ub = A.length - 1; while (lb + 1 < ub) { int mid = lb + (ub - lb) / 2; if (A[mid] == target) return mid; if (A[mid] > A[lb]) { // case1: numbers between lb and mid are sorted if (A[lb] <= target && target <= A[mid]) { ub = mid; } else { lb = mid; } } else { // case2: numbers between mid and ub are sorted if (A[mid] <= target && target <= A[ub]) { lb = mid; } else { ub = mid; } } } if (A[lb] == target) { return lb; } else if (A[ub] == target) { return ub; } return -1; } }
源码分析
- 若
target == A[mid]
,索引找到,直接返回 - 寻找局部有序数组,分析
A[mid]
和两段有序的数组特点,由于旋转后前面有序数组最小值都比后面有序数组最大值大。故若A[start] < A[mid]
成立,则start与mid间的元素必有序(要么是前一段有序数组,要么是后一段有序数组,还有可能是未旋转数组)。 - 接着在有序数组
A[start]~A[mid]
间进行二分搜索,但能在A[start]~A[mid]
间搜索的前提是A[start] <= target <= A[mid]
。 - 接着在有序数组
A[mid]~A[end]
间进行二分搜索,注意前提条件。 - 搜索完毕时索引若不是mid或者未满足while循环条件,则测试A[start]或者A[end]是否满足条件。
- 最后若未找到满足条件的索引,则返回-1.
复杂度分析
分两段二分,时间复杂度仍近似为 O(logn).
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/20655.html