Find Peak Element详解编程语言

Problem

A peak element is an element that is greater than its neighbors.

Given an input array where num[i] ≠ num[i+1], find a peak element and returnits index.

The array may contain multiple peaks, in that case return the index to any oneof the peaks is fine.

You may imagine that num[-1] = num[n] = -∞.

For example, in array [1, 2, 3, 1], 3 is a peak element and your functionshould return the index number 2.

Note:

Your solution should be in logarithmic complexity.

题解

由时间复杂度的暗示可知应使用二分搜索。首先分析若使用传统的二分搜索,若A[mid] > A[mid - 1] && A[mid] < A[mid + 1],则找到一个peak为A[mid];若A[mid - 1] > A[mid],则A[mid]左侧必定存在一个peak,可用反证法证明:若左侧不存在peak,则A[mid]左侧元素必满足A[0] > A[1] > ... > A[mid -1] > A[mid],与已知A[0] < A[1]矛盾,证毕。同理可得若A[mid + 1] > A[mid],则A[mid]右侧必定存在一个peak。如此迭代即可得解。由于题中假设端点外侧的值均为负无穷大,即num[-1] < num[0] && num[n-1] > num[n], 那么问题来了,这样一来就不能确定峰值一定存在了,因为给定数组为单调序列的话就咩有峰值了,但是实际情况是——题中有负无穷的假设,也就是说在单调序列的情况下,峰值为数组首部或者尾部元素,谁大就是谁了。

备注:如果本题是找 first/last peak,就不能用二分法了。

C++

class Solution { 
public: 
    /** 
     * @param A: An integers array. 
     * @return: return any of peek positions. 
     */ 
    int findPeak(vector<int> A) { 
        if (A.size() == 0) return -1; 
 
        int l = 0, r = A.size() - 1; 
        while (l + 1 < r) { 
            int mid = l + (r - l) / 2; 
            if (A[mid] < A[mid - 1]) { 
                r = mid; 
            } else if (A[mid] < A[mid + 1]) { 
                l = mid; 
            } else { 
                return mid; 
            } 
        } 
 
        int mid = A[l] > A[r] ? l : r; 
        return mid; 
    } 
};

Java

class Solution { 
    /** 
     * @param A: An integers array. 
     * @return: return any of peek positions. 
     */ 
    public int findPeak(int[] A) { 
        if (A == null || A.length == 0) return -1; 
 
        int lb = 0, ub = A.length - 1; 
        while (lb + 1 < ub) { 
            int mid = lb + (ub - lb) / 2; 
            if (A[mid] < A[mid + 1]) { 
                lb = mid; 
            } else if (A[mid] < A[mid - 1]){ 
                ub = mid; 
            } else { 
                // find a peak 
                return mid; 
            } 
        } 
 
        // return a larger number 
        return A[lb] > A[ub] ? lb : ub; 
    } 
}

源码分析

典型的二分法模板应用,需要注意的是需要考虑单调序列的特殊情况。当然也可使用紧凑一点的实现如改写循环条件为l < r,这样就不用考虑单调序列了,见实现2.

复杂度分析

二分法,时间复杂度 O(logn).

Java 

public class Solution { 
    public int findPeakElement(int[] nums) { 
        if (nums == null || nums.length == 0) { 
            return -1; 
        } 
 
        int start = 0, end = nums.length - 1, mid = end / 2; 
        while (start < end) { 
            if (nums[mid] < nums[mid + 1]) { 
                // 1 peak at least in the right side 
                start = mid + 1; 
            } else { 
                // 1 peak at least in the left side 
                end = mid; 
            } 
            mid = start + (end - start) / 2; 
        } 
 
        return start; 
    } 
}

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/20656.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论