Problem
Write an efficient algorithm that searches for a value in an m x n matrix, return the occurrence of it.
This matrix has the following properties:
- Integers in each row are sorted from left to right.
- Integers in each column are sorted from up to bottom.
- No duplicate integers in each row or column.
Example
Consider the following matrix:
[1, 3, 5, 7], [2, 4, 7, 8], [3, 5, 9, 10]
Given target = 3, return 2.
Challenge
O(m+n) time and O(1) extra space
题解:自右上而左下
- 复杂度要求——O(m+n) time and O(1) extra space,同时输入只满足自顶向下和自左向右的升序,行与行之间不再有递增关系。时间复杂度为线性要求,因此可从元素排列特点出发,从一端走向另一端无论如何都需要m+n步,因此可分析对角线元素。
- 首先分析如果从左上角开始搜索,由于元素升序为自左向右和自上而下,因此如果 target 大于当前搜索元素时还有两个方向需要搜索,不太合适。
- 如果从右上角开始搜索,由于左边的元素一定不大于当前元素,而下面的元素一定不小于当前元素,因此每次比较时均可排除一列或者一行元素(大于当前元素则排除当前行,小于当前元素则排除当前列,由矩阵特点可知),可达到题目要求的复杂度。
在遇到之前没有遇到过的复杂题目时,可先使用简单的数据进行测试去帮助发现规律。
C++:
class Solution { public: /** * @param matrix: A list of lists of integers * @param target: An integer you want to search in matrix * @return: An integer indicate the total occurrence of target in the given matrix */ int searchMatrix(vector<vector<int> > &matrix, int target) { if (matrix.empty() || matrix[0].empty()) { return 0; } const int ROW = matrix.size(); const int COL = matrix[0].size(); int row = 0, col = COL - 1; int occur = 0; while (row < ROW && col >= 0) { if (target == matrix[row][col]) { ++occur; --col; } else if (target < matrix[row][col]){ --col; } else { ++row; } } return occur; } };
Java:
public class Solution { /** * @param matrix: A list of lists of integers * @param: A number you want to search in the matrix * @return: An integer indicate the occurrence of target in the given matrix */ public int searchMatrix(int[][] matrix, int target) { int occurrence = 0; if (matrix == null || matrix[0] == null) { return occurrence; } int row = 0, col = matrix[0].length - 1; while (row >= 0 && row < matrix.length && col >= 0 && col < matrix[0].length) { if (matrix[row][col] == target) { occurrence++; col--; } else if (matrix[row][col] > target) { col--; } else { row++; } } return occurrence; } }
源码分析
- 首先对输入做异常处理,不仅要考虑到matrix为空串,还要考虑到 matrix[0] 也为空串。
- 注意循环终止条件。
- 在找出 target 后应继续向左搜索其他可能相等的元素,下方比当前元素大,故排除此列。
严格来讲每次取二维矩阵元素前都应该进行 null 检测。
复杂度分析
由于每行每列遍历一次,故时间复杂度为 O(m+n).
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/20657.html