【ACM】无聊的小明详解编程语言

无聊的小明

时间限制:
3000 ms  |  内存限制:65535 KB
难度:
3
 
描述
      这天小明十分无聊,没有事做,但不甘于无聊的小明聪明的想到一个解决无聊的办法,因为他突然对数的正整数次幂产生了兴趣。

  众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6……我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)。类似的,其余的数字的正整数次幂最后一位数也有类似的循环现象。

  这时小明的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后k位是否会发生循环?如果循环的话,循环长度是多少呢?

注意:

  1.如果n的某个正整数次幂的位数不足k,那么不足的高位看做是0。

  2.如果循环长度是L,那么说明对于任意的正整数a,n的a次幂和a + L次幂的最后k位都相同。
 
输入
第一行输入一个整数N(0<n<10);接下来每组测试数据输入只有一行,包含两个整数n(1 <= n <100000)和k(1 <= k <= 5),n和k之间用一个空格隔开,表示要求n的正整数次幂的最后k位的循环长度。
输出
每组测试数据输出包括一行,这一行只包含一个整数,表示循环长度。如果循环不存在,输出-1。

样例输入
1 
32 2
样例输出
4
  
#include <iostream> 
using namespace std; 
 
int main(){ 
 
    int m; 
    cin>>m; 
    int n,k; 
    while (m--) 
    { 
        cin>>n>>k; 
        int d = 10; 
        for (int i = 1; i < k; i++) 
        { 
            d*=10; 
        } 
        long long b = n%d; 
        long long temp = b; 
        int z; 
        int ans = -1; 
        for (z = 0 ; z < d ;z++) 
        { 
            temp = temp*n%d; 
            if (b==temp) 
            { 
                ans = z+1; 
                break; 
            } 
        } 
        cout<<ans<<endl; 
 
    } 
 
    return 0; 
}        

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/20688.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论