7个非常实用但被低估的Python工具包!

Python 拥有海量的包,无论是普通任务还是复杂任务,我们经常在应用程序中使用大量的工具包。本文我将讨论一些常被低估的数据科学包,包括:数据清理、应用程序开发和调试方面。

7个非常实用但被低估的Python工具包!

1、Faker

生产环境通常具有实时数据。把它放到测试环境中并不容易。我们必须对从生产到测试环境的数据进行标记化,这通常会将数据转换为乱码。

此外,在欺诈行业,我们需要找出欺诈身份。为了生成假PII(个人可识别信息),我使用了一个名为Faker的包,这是一个很酷的软件包,可以让你创建一个带有地址、名字等的假PII。

7个非常实用但被低估的Python工具包!

以上是一些虚假数据的例子。带有 GAN 假图像的假数据可以给出一个真实的人。

2、Pywebio

我们知道 Flask 适用于 Python 端的表单、UI 和 restapi。然而,如果想要一个简单的表单,Flask就不太适用了。通常用 Pywebio 来创建,它会创建了一个简单、干净的UI。所有的代码都是用普通的python编写的,并且我们不用额外学新东西!

# A simple script to calculate BMI
from pywebio.input import input, FLOAT
from pywebio.output import put_text

def bmi():
    height = input("Input your height(cm):", type=FLOAT)
    weight = input("Input your weight(kg):", type=FLOAT)

    BMI = weight / (height / 100) ** 2

    top_status = [(16, 'Severely underweight'), (18.5, 'Underweight'),
                  (25, 'Normal'), (30, 'Overweight'),
                  (35, 'Moderately obese'), (float('inf'), 'Severely obese')]

    for top, status in top_status:
        if BMI <= top:
            put_text('Your BMI: %.1f. Category: %s' % (BMI, status))
            break

if __name__ == '__main__':
    bmi()
7个非常实用但被低估的Python工具包!

在几秒钟内,它转换为一个前端 UI 网页。我们还可以编写一些会话并处理输入和输出,查看他们的文档以获取详细信息。

3、Airflow

Airflow 是我最喜欢的软件包之一,它是一种工作流管理工具,在 MLOPS 中经常被低估和较少使用,它还可以用于特定的执行间隔、重新训练模型、批处理、网站抓取、投资组合跟踪、自定义新闻提要等。

在工作流程方面,选项是无限的,它还可以连接到特定服务的云服务商。代码可以用 python 写,在 UI 上可以看到执行,非常棒。工作流也可以按特定时间间隔进行安排。

4、Loguru

Logger 是我讨厌但又不得不使用的工具,它是调试应用程序的最佳方法之一。但是,logger 里面的日志太多了,让人比较烦。而 Loguru 在某种程度上就比较友好,它虽不能解决所有挑战,但是它很容易添加日志语句并为其添加更多调试。

from loguru import logger

logger.debug("That's it, beautiful and simple logging!")

它还有助于拆分文件并执行清理,因此我们不需要查看所有历史日志。

logger.add("file_1.log", rotation="500 MB")    # Automatically rotate too big file
logger.add("file_2.log", rotation="12:00")     # New file is created each day at noon
logger.add("file_3.log", rotation="1 week")    # Once the file is too old, it's rotated

logger.add("file_X.log", retention="10 days")  # Cleanup after some time

logger.add("file_Y.log", compression="zip")    # Save some loved space

你还可以使用参数 backtrace 来回溯执行。

简而言之,在生产环境中使用这个包来调试应用程序或 AI 模型训练是值得的。

5、Pydash

通常在数据清洗或处理中,我们要处理大量的数据清洗。这些是一些较小的项目,需要时间。例如,如何展平列表?当然,你可以写一个清单,但是如果有一个快速功能来执行这些操作呢?

这就是Pydash闪耀的地方,它成为了我的快速转到库,其中包含一系列python实用程序。

7个非常实用但被低估的Python工具包!

以上只是一个小例子,它包含很多功能,绝对值得一看。

6、Weights & Biases

WANDB是跟踪和可视化机器学习管道最有用的包之一,我最喜欢的部分是他们的central dashboard,它类似于记录器,但可以做更多的事情。

7个非常实用但被低估的Python工具包!
7个非常实用但被低估的Python工具包!

它易于使用,并集成了最流行的库,如 Tensorflow、PyTorch、fastai、huggingface 等。但是,在商业领域使用它时有一些限制,你必须付费订阅。除此之外,它是一个很棒的库。

7、PyCaret

在R中我最喜欢的一个包是caret 包,当我看到 PyCaret 包时,我很兴奋。因为它简化了许多编码,当你想快速做某件事情时可以使用。这个包有很多关于默认参数的选项,可以用不同的度量点运行不同的模型。

7个非常实用但被低估的Python工具包!

结论

正如本文所说的,我们看到在应用程序开发或数据分析中使用了不同的包,这并不是一份详尽的清单,我会继续为大家分享更多的实用的工具包。如果你有使用任何其他经常未低估的软件包,可以在评论中告诉我。

文章推荐

超级干货!史上最全数据分析学习路线(附资源下载)

再见”黑匣子模型”!SHAP 可解释 AI (XAI)实用指南来了!

吐血整理:43种机器学习开源数据集(附地址/调用方法)

盘点2021年数据科学最流行的29个Python库

被Altair圈粉了!Python数据可视化又来一位猛将!

4 款 Python 数据探索性分析(EDA)工具包,总有一款适合你!

效率倍增!12 个必须尝试的 Python 工具包!

下一代数据科学工具!

绘图就可以创建机器学习模型!human-learn做到了!

这招可以让Pandas 数据帧处理速度提高400倍!

再见Pyechart,一个非常棒的 Python 统计图表库来了!

干货 | 2021年机器学习不容错过的14个博客

超赞!20个炫酷的数据可视化大屏(含源码)

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/221972.html

(0)
上一篇 2022年1月4日
下一篇 2022年1月4日

相关推荐

发表回复

登录后才能评论