1、将测试数据上传到HDFS目录下,这里放到根目录下:/test.txt
2、在master节点中某个目录下:创建mapper、reducer以及run.sh
- mapper.py
import sys
for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:
print "%s/t%s" % (word, 1)
- reducer.py
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
line = line.strip()
word, count = line.split('/t', 1)
try:
count = int(count)
except ValueError:
continue
if current_word == word:
current_count += count
else:
if current_word:
print "%s/t%s" % (current_word, current_count)
current_count = count
current_word = word
if word == current_word:
print "%s/t%s" % (current_word, current_count)
- run.sh
#!/usr/bin/bash
streaming_jar="/usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-3.3.2.jar"
input="/test.txt"
output="/output"
hadoop fs -rmr $output
hadoop jar ${streaming_jar} /
-files mapper.py,reducer.py /
-jobconf mapred.job.priority="VERY_HIGH" /
-jobconf mapred.map.tasks=5 /
-jobconf mapred.job.map.capacity=5 /
-jobconf mapred.job.name="streaming_wordcount" /
-input $input /
-output $output /
-mapper "python mapper.py" /
-reducer "python reducer.py"
if [ $? -ne 0 ];then
echo "streaming_wordcount job failed"
exit 1
fi
3、运行sh run.sh
.....
2022-09-11 03:06:09,869 INFO mapreduce.Job: map 0% reduce 0%
2022-09-11 03:06:15,931 INFO mapreduce.Job: map 14% reduce 0%
2022-09-11 03:06:20,971 INFO mapreduce.Job: map 100% reduce 0%
2022-09-11 03:06:21,979 INFO mapreduce.Job: map 100% reduce 100%
2022-09-11 03:06:21,994 INFO mapreduce.Job: Job job_1662694559814_0004 completed successfully
.....
进入HDFS Web管理界面-Utilities-Browse the file system可以看到词频统计结果已写到HDFS根目录/output中
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/288769.html