spark中如何实现行列转换即宽表窄表转换,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
不定期上代码干货
spark列转行
from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession, SQLContext, Row, functions as F from pyspark.sql.functions import array, col, explode, struct, lit conf = SparkConf().setAppName("test").setMaster("local[*]") sc = SparkContext(conf=conf) spark = SQLContext(sc) # df is datasource, by will exclude column def df_columns_to_line(df, by): # Filter dtypes and split into column names and type description df_a = df.select([col(c).cast("string") for c in df.columns]) cols, dtypes = zip(*((c, t) for (c, t) in df_a.dtypes if c not in by)) # Spark SQL supports only homogeneous columns assert len(set(dtypes)) == 1, "All columns have to be of the same type" # Create and explode an array of (column_name, column_value) structs kvs = explode(array([ struct(lit(c).alias("feature"), col(c).alias("value")) for c in cols ])).alias("kvs") return df_a.select(by + [kvs]).select(by + ["kvs.feature", "kvs.value"]) df = sc.parallelize([(1, 0.0, 0.6), (1, 0.6, 0.7)]).toDF(["A", "col_1", "col_2"]) df_row_data = df_columns_to_line(df, ["A"]) df.show() df_row_data.show()
>>> df.show() +---+-----+-----+ | A|col_1|col_2| +---+-----+-----+ | 1| 0.0| 0.6| | 1| 0.6| 0.7| +---+-----+-----+ >>> df_row_data.show() +---+-------+-----+ | A|feature|value| +---+-------+-----+ | 1| col_1| 0.0| | 1| col_2| 0.6| | 1| col_1| 0.6| | 1| col_2| 0.7| +---+-------+-----+
注意feature和value是原多列名转换为行数据后,重新定义的最终两列名
spark行转列
df_features = df_row_data.select('feature').distinct().collect() features = map(lambda r:r.feature, df_features) df_column_data = df_row_data.groupby("A").pivot('feature', features).agg(F.first('value', ignorenulls=True)) df_column_data.show()
+---+-----+-----+ | A|col_2|col_1| +---+-----+-----+ | 1| 0.6| 0.0| +---+-----+-----+
行转列比较简单,在上文结果基础上直接转换,关键是pivot函数的使用
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。
原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/223282.html