1.概述
前面我们已经对Hadoop有了一个初步认识,接下来我们开始学习Hadoop的一些核心的功能,其中包含mapreduce,fs,hdfs,ipc,io,yarn,今天为大家分享的是mapreduce部分,其内容目录如下所示:
- MapReduce V1
- MapReduce V2
- MR V1和MR V2的区别
- MR V2的重构思路
本篇文章的源码是基于hadoop-2.6.0-src.tar.gz来完成的。代码下载地址,请参考《Hadoop2源码分析-准备篇》。
2.MapReduce V1
下面我们给出第一代的MapReduce的架构图,如下所示:
上图描述了第一代MapReduce框架的流程以及设计思路,下面为大家解释下这张图的具体含义:
- 当我们编写完MR作业后,需要通过JobClient来提交一个job,提交的信息会发送到JobTracker模块,这个模块是第一代MapReduce计算框架的核心之一,它负责与集群中的其他节点维持心跳,为提交的作业分配资源,管理提交的作业的正常运作(失败,重启等)。
- 第一代MapReduce的另一个核心的功能是TaskTracker,在各个TaskTracker安装节点上,它的主要功能是监控自己所在节点的资源使用情况。
- TaskTracker监控当前节点的Tasks的运行情况,其中包含Map Task和Reduce Task,最后由Reduce Task到Reduce阶段,将结果输送到HDFS的文件系统中;其中的具体流程如图中描述的1-7步骤。TaskTracker在监控期间,需要把这些信息通过心跳机制发送给JobTracker,JobTracker收集到这些信息后,给新提交的作业分配其他的资源,避免重复资源分配。
可以看出,第一代的MapReduce架构简单清晰,在刚面世的那几年,也曾获得总多企业的支持和认可。但随着分布式集群的规模和企业业务的增长,第一代框架的问题也逐渐暴露出来,主要有以下问题:
- JobTracker是第一代MapReduce的入口点,若是JobTracker服务宕机,整个服务将会瘫痪,存在单点问题。
- JobTracker负责的事情太多,完成来太多的任务,占用过多的资源,当Job数非常多的时候,会消耗很多内存,容易出现性能瓶颈。
- 对TaskTracker而言,Task担当的角色过于简单,没有考虑到CPU及内存的使用情况,若存在多个大内存的Task被集中调度,容易出现内存溢出。
- 另外,TaskTracker把资源强制分为map task slot和reduce task slot,若是MR任务中只存在其中一个(map或是reduce),会出现资源浪费的情况,资源利用率低。
- 从开发人员的角度来说,源码分析的时候,阅读性不够友好,代码量大,任务不清晰,给开发人员在修复BUG和维护的时候增大了难度。
3.MapReduce V2
在Hadoop V2中,加入了YARN的概念,所以MapReduce V2的架构和MapReduce V1的架构有些许的变化,如下图所示:
从上图中,我们可以清晰的看出,架构重构的基本思想在于将JobTracker的两个核心的功能单独分离成独立的组件了。分离后的组件分别为资源管理(Applications Manager)和任务调度器(Resource Scheduler)。新的资源管理器(Resource Manager)管理整个系统的资源分配,而每一个Node Manager下的App Master(Application Master)负责对应的调度和协调工作,而在实际中,App Master从Resource Manager上获得资源,让Node Manager来协同工作和任务监控。
从图中我们可以看出,Resource Manager是支持队列分层的,这些队列可以从集群中获取一定比例的资源,也就是说Resource Manager可以算得上是一个调度器,它在执行的过程当中本身不负责对应用的监控和状态的定位跟踪。
Resource Manager在内存,CPU,IO等方面是动态分配的,相比第一代MapReduce计算框架,在资源使用上大大的加强了资源使用的灵活性。上图中的Node Manager是一个代理框架,负责应用程序的执行,监控应用程序的资源利用率,并将信息上报给资源管理器。另外,App Master所担当的角色职责包含:在运行任务是,向任务调度器动态的申请资源,对应用程序的状态进行监控,处理异常情况,如若出现问题,会在其他节点进行重启。
4.MR V1和MR V2的区别
在和大家分析完 MR V1 和 MR V2 的架构后,我们来看看二者有哪些变化。在MR V2版本中,大部分的API接口都是兼容的保留下来,MR V1中的JobTracker和TaskTracker被替换成相应的Resource Manager,Node Manager。对比于MR V1中的Task的监控,重启等内热都交由App Master来处理,Resource Manager提供中心服务,负责资源的分配与调度。Node Manager负责维护Container的状态,并将收集的信息上报给Resource Manager,以及负责和Resource Manager维持心跳。
MR V2中加入Yarn的概念后,体现以下设计优点:
- 减少来资源消耗,让监控每一个作业更加分布式了。
- 能够支持更多的变成模型,如:Spark,Storm,以及其他待开发的编程模型。
- 将资源以内存量的概念来描述,比MR V1中的slot更加合理。
另外,在工程目录结构也有了些许的变化,如下表所示:
改变目录 | MR V1 | MR V2 | 描述 |
配置文件 | ${HADOOP_HOME}/conf | ${HADOOP_HOME}/etc/hadoop | MR V2中的配置文件路径修改为etc/hadoop目录下 |
脚本 | ${HADOOP_HOME}/bin | ${HADOOP_HOME}/sbin和${HADOOP_HOME}/bin | 在MR V2中启动,停止等命令都位于sbin目录下,操作hdfs的命令存放在bin目录下 |
JAVA_HOME | ${HADOOP_HOME}/conf/hadoop-env.sh | ${HADOOP_HOME}/etc/hadoop/hadoop-env.sh和${HADOOP_HOME}/etc/hadoop/yarn-env.sh | 在MR V2中需要同时在hadoop-env.sh和yarn-env.sh中配置JDK的路径 |
由于添加Yarn特性,与第一代MR的框架变化较大,第一代的核心配置文件许多项也在新框架中摒弃了,具体新框架的核心配置文件信息,请参考《配置高可用的Hadoop平台》。
5.MR V2的重构思路
在V2中的MapReduce重构的思路主要有以下几点:
- 层次化的管理:分层级对资源的调度和分配进行管理。
- 资源管理方式:由第一代的slot作为资源单位元,调整为更加细粒的内存单位元。
- 编程模型拓展:V2版的设计支持除MapReduce以外的编程模型。
MapReduce:WordCount V2,代码如下:
package cn.hdfs.mapreduce.example; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.net.URI; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Set; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.StringUtils; /** * @date Apr 17, 2015 * * @author dengjie */ public class WordCount2 { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ static enum CountersEnum { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private boolean caseSensitive; private Set<String> patternsToSkip = new HashSet<String>(); private Configuration conf; private BufferedReader fis; @Override public void setup(Context context) throws IOException, InterruptedException { conf = context.getConfiguration(); caseSensitive = conf.getBoolean("wordcount.case.sensitive", true); if (conf.getBoolean("wordcount.skip.patterns", true)) { URI[] patternsURIs = Job.getInstance(conf).getCacheFiles(); for (URI patternsURI : patternsURIs) { Path patternsPath = new Path(patternsURI.getPath()); String patternsFileName = patternsPath.getName().toString(); parseSkipFile(patternsFileName); } } } private void parseSkipFile(String fileName) { try { fis = new BufferedReader(new FileReader(fileName)); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err.println("Caught exception while parsing the cached file '" + StringUtils.stringifyException(ioe)); } } @Override public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); Counter counter = context.getCounter(CountersEnum.class.getName(), CountersEnum.INPUT_WORDS.toString()); counter.increment(1); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); GenericOptionsParser optionParser = new GenericOptionsParser(conf, args); String[] remainingArgs = optionParser.getRemainingArgs(); if (!(remainingArgs.length != 2 || remainingArgs.length != 4)) { System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]"); System.exit(2); } Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount2.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); List<String> otherArgs = new ArrayList<String>(); for (int i=0; i < remainingArgs.length; ++i) { if ("-skip".equals(remainingArgs[i])) { job.addCacheFile(new Path(remainingArgs[++i]).toUri()); job.getConfiguration().setBoolean("wordcount.skip.patterns", true); } else { otherArgs.add(remainingArgs[i]); } } FileInputFormat.addInputPath(job, new Path(otherArgs.get(0))); FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1))); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
Spark:WordCount,代码如下:
package com.hdfs.spark.example /** * @date Apr 17, 2015 * * @author dengjie */ import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ /** * 统计字符出现次数 */ object WordCount { def main(args: Array[String]) { if (args.length < 1) { System.err.println("Usage: <file>") System.exit(1) } val conf = new SparkConf() val sc = new SparkContext(conf) val line = sc.textFile(args(0)) line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect().foreach(println) sc.stop() } }
6.结束语
这篇文章就和大家分享到这里,如果大家在研究和学习的过程中有什么疑问,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/228086.html