Numpy中有两种将 ndarray
转换为一维数组类似的方法:Flatten()
和 Ravel()
。
import numpy as np a = np.array( [ (1,7,3,4),(3,2,4,1) ] ) #OUTPUT: print( a.flatten() ) # [ 1,7,3,4,3,2,4,1 ] print ( a.ravel() ) # [ 1,7,3,4,3,2,4,1 ]
那么问题是:为什么有两个 numpy 函数来完成相同的任务?Flatten()
和 Ravel()
的区别:
a.ravel():
- 只返回原始数组的引用/视图
- 如果修改数组,就会注意到原始数组的值也会发生变化。
- Ravel() 比 flatten() 更快,因为它不占用任何内存。
- Ravel() 是一个库级函数。
a.flatten() :
- 返回原始数组的副本;
- 如果您修改此数组的任何值,原始数组的值不受影响。
Flatten()
比 ravel() 相对慢,因为它占用内存。- Flatten 是一个 ndarray 对象的方法。
让我们看看这段代码的区别:
# Python code to differentiate # between flatten and ravel in numpy import numpy as np # Create a numpy array a = np.array([(1,2,3,4),(3,1,4,2)]) # Let's print the array a print ("Original array:n ") print(a) # To check the dimension of array (dimension =2) # ( and type is numpy.ndarray ) print ("Dimension of array-> " , (a.ndim)) print("nOutput for RAVEL n") # Convert nd array to 1D array b = a.ravel() # Ravel only passes a view of # original array to array 'b' print(b) b[0]=1000 print(b) # Note here that value of original # array 'a' at also a[0][0] becomes 1000 print(a) # Just to check the dimension i.e. 1 # (and type is same numpy.ndarray ) print ("Dimension of array->" ,(b.ndim)) print("nOutput for FLATTEN n") # Convert nd array to 1D array c = a.flatten() # Flatten passes copy of # original array to 'c' print(c) c[0]=0 print(c) # Note that by changing # value of c there is no # affect on value of original # array 'a' print(a) print ("Dimension of array-> " , (c.ndim))
运行结果如下:
Original array: [[1 2 3 4] [3 1 4 2]] Dimension of array-> 2 Output for RAVEL [1 2 3 4 3 1 4 2] [1000 2 3 4 3 1 4 2] [[1000 2 3 4] [ 3 1 4 2]] Dimension of array-> 1 Output for FLATTEN [1000 2 3 4 3 1 4 2] [0 2 3 4 3 1 4 2] [[1000 2 3 4] [ 3 1 4 2]] Dimension of array-> 1
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/264176.html