点击查看代码
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
from torch.utils import data
from torchvision.transforms import transforms
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# trans = transforms.ToTensor()
# train_set = torchvision.datasets.FashionMNIST(root="./data", train=True,
# transform=trans, download=True)
# test_set = torchvision.datasets.FashionMNIST(root="./data", train=False,
# transform=trans, download=True)
#
#
# train_iter = data.DataLoader(train_set, batch_size, shuffle=True)
# test_iter = data.DataLoader(test_set, batch_size, shuffle=True)
# 初始化模型参数
# PyTorch不会隐式地调整输入的形状。因此,在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
# 交叉熵损失函数
loss = nn.CrossEntropyLoss(reduction='none')
# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
def accuracy(y_hat, y): #@save
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
# 评估在任意模型net的精度
def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
# isinstance 判断一个对象的变量类型
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
class Accumulator: #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# 训练
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型一个迭代周期(定义见第3章)"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型(定义见第3章)"""
# animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
# legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
# animator.add(epoch + 1, train_metrics + (test_acc,))
print("train_acc:{},train_loss:{},".format(train_metrics[1], train_metrics[0]))
print("test_acc:{}".format(test_acc))
train_loss, train_acc = train_metrics
num_epochs = 2
# d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.predict_ch3(net, test_iter)
原创文章,作者:745907710,如若转载,请注明出处:https://blog.ytso.com/267058.html