字符串排序算法:
- 键索引计数法
- 低位优先的字符串排序算法(Least-Significant-Digit-First, LSD)
- 高位优先的字符串排序算法(MSD)
- 三向字符串快速排序
键索引计数法
适用性:适用于小整数键的排序算法
稳定性:稳定的排序算法,排序后键相同的元素的相对位置没有变化
思路:计算数据每个键的起始位置
- 统计键出现的频率
- 将频率转换成键在数组中的起始位置
算法实现:
/**
* 键索引计数法
* */
public class KeyIndexCount {
private static final int R = 100; // 数字范围 [0, R)
public static void sort(int[] data) {
int n = data.length;
// 统计频率
int[] count = new int[R + 1];
for (int i = 0; i < n; i++) {
count[data[i] + 1]++;
}
// 将频率转换成索引
for (int r = 0; r < R; r++) {
count[r + 1] += count[r];
}
// 数据分类
int[] aux = new int[n];
for (int i = 0; i < n; i++) {
aux[count[data[i]]] = data[i];
count[data[i]]++;
}
// 回写
System.arraycopy(aux, 0, data, 0, n);
}
}
测试:
class KeyIndexCountTest {
@Test
void sort() {
Random random = new Random();
int[] data = new int[100];
for (int i = 0; i < 100; i++) {
data[i] = random.nextInt(100);
}
KeyIndexCount.sort(data);
Assertions.assertTrue(SortUtils.isSorted(data));
}
}
低位优先的字符串排序算法
适用性:适用于定长的字符串排序
思路:从右往左对每个字符应用键索引计数法
算法实现:
/**
* 低位优先的字符串排序算法
* */
public class LSD {
private static final int R = 256; // 字符集大小
/**
* @param w 按前 w 位排序
* */
public static void sort(String[] data, int w) {
int n = data.length;
String[] aux = new String[n];
// 从右往左对每个字符应用键索引计数法
for (int d = w - 1; d >= 0; d--) {
// 统计频率
int[] count = new int[R + 1];
for (int i = 0; i < n; i++) {
count[data[i].charAt(d) + 1]++;
}
// 将频率转换为索引
for (int r = 0; r < R; r++) {
count[r + 1] += count[r];
}
// 数据分类
for (int i = 0; i < n; i++) {
aux[count[data[i].charAt(d)]] = data[i];
count[data[i].charAt(d)]++;
}
// 回写
System.arraycopy(aux, 0, data, 0, n);
}
}
}
测试:
class LSDTest {
@Test
void sort() {
String[] data = new String[]{"4PGC938", "2IYE230", "3CIO720", "1ICK750", "1OHV845", "4JZY524", "1ICK750", "3CIO720", "1OHV845", "1OHV845", "2RLA629", "2RLA629", "3ATW723"};
LSD.sort(data, 7);
Assertions.assertEquals(
"[1ICK750, 1ICK750, 1OHV845, 1OHV845, 1OHV845, 2IYE230, 2RLA629, 2RLA629, 3ATW723, 3CIO720, 3CIO720, 4JZY524, 4PGC938]",
Arrays.toString(data)
);
}
}
高位优先的字符串排序算法
适用性:适用于变长字符串
思路:将字符串从左到右按字符排序
- 将当前字符应用键索引计数法排序
- 将数组按当前字符分组,递归处理下一个字符
算法实现:
/**
* 高位优先字符串排序算法
* */
public class MSD {
private static final int R = 256; // 字符集大小
private static String[] aux;
public static void sort(String[] data) {
aux = new String[data.length];
sort(data, 0, data.length - 1, 0);
}
/**
* @param lo 子数组开始位置
* @param hi 子数组结束位置
* @param d 处理索引位置为 d 的字符
* */
private static void sort(String[] data, int lo, int hi, int d) {
if (lo >= hi) {
return;
}
int n = data.length;
// 统计频率
int[] count = new int[R + 2];
for (int i = lo; i <= hi; i++) {
count[charAt(data[i], d) + 2]++;
}
// 将频率转换为索引
for (int r = 0; r < R + 1; r++) {
count[r + 1] += count[r];
}
// 数据分类
for (int i = lo; i <= hi; i++) {
aux[count[charAt(data[i], d) + 1]] = data[i];
count[charAt(data[i], d) + 1]++;
}
// 回写
for (int i = lo; i <= hi; i++) {
data[i] = aux[i - lo];
}
// 递归处理子数组
for (int r = 0; r < R; r++) {
sort(data, lo + count[r], lo + count[r + 1] - 1, d + 1);
}
}
/**
* @return 字符串中索引位置为 d 的字符,超过字符串长度返回 -1
* */
private static int charAt(String s, int d) {
if (d < s.length()) {
return s.charAt(d);
}
return -1;
}
}
测试:
class MSDTest {
@Test
void sort() {
String[] data = new String[]{"she", "sells", "seashells", "by", "the", "seashore", "the", "shells", "she", "sells", "are", "surely", "seashells"};
MSD.sort(data);
Assertions.assertEquals(
"[are, by, seashells, seashells, seashore, sells, sells, she, she, shells, surely, the, the]",
Arrays.toString(data)
);
}
}
三向字符串快速排序
算法实现:
/**
* 三向字符串快速排序
* */
public class Quick3String {
public static void sort(String[] data) {
sort(data, 0, data.length - 1, 0);
}
private static void sort(String[] data, int lo, int hi, int d) {
if (lo >= hi) {
return;
}
int lt = lo;
int gt = hi;
int v = chatAt(data[lo], d);
int i = lo + 1;
while (i <= gt) {
int t = chatAt(data[i], d);
if (t < v) {
exch(data, lt++, i++);
} else if (t > v) {
exch(data, gt--, i);
} else {
i++;
}
}
sort(data, lo, lt - 1, d);
if (v > 0) sort(data, lt, gt, d + 1);
sort(data, gt + 1, hi, d);
}
private static int chatAt(String s, int d) {
if (d < s.length()) {
return s.charAt(d);
}
return -1;
}
private static void exch(String[] data, int i, int j) {
String t = data[i];
data[i] = data[j];
data[j] = t;
}
}
测试:
class Quick3StringTest {
@Test
void sort() {
String[] data = new String[]{"edu.princeton.cs", "com.apple", "edu.princeton.cs", "com.cnn", "com.google", "edu.uva.cs", "edu.princeton.cs", "edu.princeton.cs.www", "edu.uva.cs", "edu.uva.cs", "edu.uva.cs", "com.adobe", "edu.princeton.ee"};
Quick3String.sort(data);
Assertions.assertEquals(
"[com.adobe, com.apple, com.cnn, com.google, edu.princeton.cs, edu.princeton.cs, edu.princeton.cs, edu.princeton.cs.www, edu.princeton.ee, edu.uva.cs, edu.uva.cs, edu.uva.cs, edu.uva.cs]",
Arrays.toString(data)
);
}
}
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/280303.html